|
|
OPTICAL PROPERTIES OF CARBON NANOTUBES AND GRAPHENE
Symmetry-adapted phenomenological lattice-dynamical model for SWNTs
· Atomic structure of the SWNTs ● Symmetry-adapted phenomenological dynamical model for SWNTs
· Phonon dispersion of SWNTs ● Frequencies of Γ-phonons of SWNTs ● Eigenvectors of Γ-phonon of SWNTs
· Elastic properties of isolated SWNTs
Phenomenological lattice-dynamical models for bundles of SWNTs and isolated MWNTs
· Phenomenological dynamical model for bundles of SWNTs and isolated MWNTs
· Breathing-like modes of finite and infinite bundles of SWNTs and isolated DWNTs
· Elastic properties of bundles of SWNTs
· Heat capacity of bundles of SWNTs and isolated MWNTs
The following dynamical models are used: force-constant model and valence force-field model for the intralayer interactions, and pair potentials for the interlayer interactions. The non-resonant Raman intensity is calculated using the bond-polarizability model.
Symmetry-adapted tight-binding approach to the optical properties of SWNTs
· Relaxation of the structure of the SWNTs ● Symmetry-adapted tight-binding model for SWNTs ● Electronic band structure of SWNTs ● Dielectric function of SWNTs ● Optical transition energies of SWNTs (Kataura plot)
· Symmetry-adapted tight-binding dynamical model for SWNTs ●Phonon dispersion of SWNTs ● Kohn anomaly in the phonon dispersion of SWNTs and dynamical corrections
· One-phonon resonant Raman scattering in SWNTs – full calculation and approximations ● Effective mass ● Electron-photon coupling ● Electron-phonon coupling
· Resonant Raman intensity of the RBM – full calculation ● Resonant Raman intensity of the RBM and A1 G modes – full calculation
· Resonant Raman intensity of the RBM – approximations ● Resonant Raman intensity of the RBM and A1 G modes - approximations
· Two-phonon resonant Raman scattering in SWNTs
Tight-binding approach to the optical properties of DWNTs
· Modification of the electronic structure of DWNTs due to interlayer interactions
· Shift of the G mode of DWNTs due to interlayer interactions
Tight-binding approach to the optical properties of SLG
· Electronic band structure and phonon dispersion of SLG ● Kohn anomaly in the phonon dispersion of SLG, dynamical corrections, and charge doping effects
· One-phonon resonant Raman scattering in SLG, incl. effect of defects ● One-phonon resonant Raman scattering in SLG – effect of strain
· Two-phonon resonant Raman scattering in SLG ● Two-phonon resonant Raman scattering in SLG in the UV region ● Two-phonon resonant Raman scattering in SLG – effect of strain
· Electronic band structure, phonon dispersion, and Raman bands of α-, β-, and γ-graphyne
· Electronic band structure, phonon dispersion and two-phonon Raman bands of silicene
Tight-binding approach to the optical properties of BLG and FLG
· Electronic band structure, phonon dispersion, and two-phonon resonant Raman scattering in BLG
· Electronic band structure and G band of twisted BLG
· Electronic band structure, phonon dispersion, breathing-like and shear modes of FLG
An ab-initio-based tight-binding model with no adjustable parameters is used for calculation of the electronic band structure, phonon dispersion, phonon dispersion, electronic broadening parameter, and electron-phonon and electron-photon couplings.
PUBLICATIONS ON NANOTUBES AND GRAPHENE
2025
[70] D.
A. Kalchevski, D. V. Trifonov,
S. K. Kolev, V.
N. Popov, H. A. Aleksandrov, and T. I. Milenov, Theoretical study on the mechanisms of formation
of primal carbon clusters and nanoparticles in space, Phys. Chem. Chem. Phys., 27
(2025) 1819 – 1833. https://doi.org/10.1039/D4CP02865A
2024
[69] T. Milenov, P. Rafailov, R. Yakimova, I. Shtepliuk, V. Popov, Raman fingerprint of the
graphene buffer layer grown on the Si‐terminated face of 4H‐SiC
(0001): Experiment and theory, J. Raman Spectrosc. 55
(2024) 416 – 424. https://doi.org/10.1002/jrs.6642
2023
[68] D. I. Levshov, M. V. Avramenko, M. Erkens, H.-N.Tran, T. T. Cao, V. C. Nguyen, E. Flahaut, V. N. Popov, A.-A. Zahab, J.-L. Sauvajol, R. Arenal, W. Wenseleers, S. Cambré, M. Paillet, Partial quenching of electronic Raman scattering in double-wall carbon nanotubes by interlayer coupling. Carbon 203 (2023) 801 – 812. https://doi.org/10.1016/j.carbon.2022.12.003
2022
[67] M. Erkens, D. Levshov, W. Wenseleers, H. Li, B. S. Flavel, J. A. Fagan, V. N. Popov, M. Avramenko, S. Forel, E. Flahaut, and S. Cambré, Efficient Inner-to-Outer Wall Energy Transfer in Highly Pure Double-Wall Carbon Nanotubes Revealed by Detailed Spectroscopy, ACSNano 16 (2022) 16030–16053, https://doi.org/10.1021/acsnano.2c03883.
[66] M.-K. Li, A. Riaz, M. Wederhake, K. Fink, A. Saha, S. Dehm, X. He, F. Schöppler, M. M. Kappes, H. Htoon, V. N. Popov, S. K. Doorn, T. Hertel, F. Hennrich, and R. Krupke, Electroluminescence from Single-Walled Carbon Nanotubes with Quantum Defects, ACSNano 16 (2022) 11742–11754, https://doi.org/10.1021/acsnano.2c03083.
[65] M. Paillet, V. N. Popov, H. N. Tran, J.-C. Blancon, D. I. Levshov, R. Arenal, R. Parret, A.Ayari, A. San Miguel, F. Vallée, N. Del Fatti, A. A. Zahab, J.-L. Sauvajol, Optically active cross-band transition in double-walled carbon nanotube and its impact on Raman resonances, Carbon 196 (2022) 950 – 960. https://doi.org/10.1016/j.carbon.2022.05.044
2021
[64] K. Kolev, H. A. Aleksandrov, V. A. Atanasov, V. N. Popov, T. I. Milenov, Surface chemistry of reduced graphene oxide: H-atom transfer reactions, Applied Surface Science 567 (2021) 150815. https://doi.org/10.1016/j.apsusc.2021.150815
2020
[63] V. N. Popov, Theoretical evidence of a significant modification of the electronic structure of double-walled carbon nanotubes due to the interlayer interaction, Carbon 170 (2020) 30-36, https://doi.org/10.1016/j.carbon.2020.07.036
2019
[62] S. K. Kolev, H. A. Aleksandrov, V. A. Atanasov, V. N. Popov, T. I. Milenov, Interaction of Graphene with Out-of-Plane Aromatic Hydrocarbons, J. Phys. Chem. C 123, 2019, 21448-21456, https://doi.org/10.1021/acs.jpcc.9b03550.
[61] V. N. Popov, Two-phonon Raman scattering in graphene, AIP Conf.Proc.2075, 110001 (2019), https://doi.org/10.1063/1.5091252.
2018
[60] V. N. Popov, Two-phonon Raman bands of single-walled carbon nanotubes: A case study, Phys. Rev. B 98 (2018) 085413/1-6, DOI: 10.1103/PhysRevB.98.085413.
[59] Ch. Tyborski, A. Vierck, R. Narula, V. N. Popov, and J. Maultzsch, Double-resonant Raman scattering with optical and acoustic phonons in carbon nantoubes, Phys. Rev. B 97 (2018) 214306/1-6. DOI: 10.1103/PhysRevB.97.214306.
[58] V. N. Popov, D. I. Levshov, J.-L. Sauvajol, and M. Paillet, Computational study of the shift of the G band of double-walled carbon nanotubes due to interlayer interactions, Phys. Rev. B 97 (2018) 165417/1-7. DOI: 10.1103/PhysRevB.97.165417.
[57] V. N. Popov, Raman bands of twisted bilayer graphene, J. Raman Spectroscopy 49 (2018) 31-35. DOI: 10.1002/jrs.5189
2017
[56] D. I. Levshov, R. Parret, H.-N. Tran, Th. Michel, Th. Th. Cao, V. Ch. Nguyen, R. Arenal, V. N. Popov, S. B. Rochal, J.-L. Sauvajol, A.-A. Zahab, and M. Paillet, Inner tube photoluminescence of isolated individual free-standing index-identified double-walled carbon nanotubes, Phys. Rev. B 96 (2017) 195410/1-7. DOI: 10.1103/PhysRevB.96.195410.
[55] T. I. Milenov, E. Valcheva, and V. N. Popov, Raman Spectroscopic Study of Defected Graphene Deposited on (001) Si Substrates by CVD, J. Spectroscopy 2017 (2017) 3495432/1-8. DOI: 10.1155/2017/3495432
[54] T. I. Milenov, I. Avramova, E. Valcheva, G. V. Avdeev, S. Rusev, S. Kolev, I. Balchev, I. Petrov, and V. N. Popov, Deposition of defected graphene on (001) Si substrates by thermal decomposition of acetone, Superlattices and Microstructures 111 (2017) 45-56.
[53] D. I. Levshov, H.-N. Tran, T. Michel, T. T. Cao, V. C. Nguyen, R. Arenal, V. N. Popov, J.-L. Sauvajol, A.-A. Zahab, M. Paillet, Interlayer interaction effects on the G modes in double-walled carbon nanotubes with different electronic configurations, phys. stat. sol. B 254 (2017) 1700251.
2016
[52] H. N. Tran, J.-C. Blancon, J.-R. Huntzinger, R. Arenal, V. N. Popov, A. A. Zahab, A. Ayari, A. San-Miguel, F. Vallée, N. Del Fatti, J.-L. Sauvajol, M. Paillet, Excitonic optical transitions characterized by Raman excitation profiles in single-walled carbon nanotubes, Phys. Rev. B 94 (2016) 075430/1-6.
[51] V. N. Popov and Ph. Lambin, Comparative study of the two-phonon Raman bands of silicene and graphene, 2D Materials 3 (2016) 025014.
[50] V. N. Popov, Two-phonon Raman scattering in graphene for laser excitation beyond the π-plasmon energy, J. Phys.: Conf. Ser. 764 (2016) 012008.
2015
[49] V. N. Popov, Two-phonon Raman bands of bilayer graphene: revisited, Carbon 91 (2015) 436-444.
[48] V. N. Popov, 2D Raman band of single-layer and bilayer graphene, , J. Phys.: Conf. Ser. 682 (2015) 012013.
2014
[47] V. N. Popov and Ch. van Alsenoy, Low-frequency phonons of few-layer graphene within a tight-binding model, Phys. Rev. B 90 (2014) 245429.
2013
[46] V. N. Popov and Ph. Lambin, Theoretical Raman band of strained graphene, Phys. Rev. B 87 (2013) 155425/1-7.
[45] V. N. Popov and Ph. Lambin, Theoretical Raman intensity of the G and 2D bands of strained graphene, Carbon 54 (2013) 86.
[44] V. N. Popov and Ph. Lambin, Theoretical Raman fingerprints of α-, β-, and γ -graphyne, Phys. Rev. B 88 (2013) 075427/1-5.
2012
[43] V. N. Popov and Ph. Lambin, Theoretical polarization dependence of the two-phonon double-resonant Raman spectra of graphene, Eur. Phys. J. B 85 (2012) 418.
2011
[42] D. Levshov, T. Than, R. Arenal, V. N. Popov, R. Parret, M. Paillet, V. Jourdain, A. A. Zahab, T. Michel, Yu. I. Yuzyuk, and J.-L. Sauvajol, Experimental evidence of a mechanical coupling between layers in an individual double-walled carbon nanotube, NanoLett. 11 (2011) 4800-4804.
[41] V. N. Popov, Non-adiabatic phonon dispersion of graphene, Bulg. J. Phys. 38 (2011) 72-84.
2010
[40] V. N. Popov and Ph. Lambin, Non-Adiabatic Phonon Dispersion of Metallic Single-Walled Carbon Nanotubes, Nano Res. 3 (2010) 822–829.
[39] V. N. Popov and Ph. Lambin, Dynamic and charge doping effects on the phonon dispersion of graphene, Phys. Rev. B 82 (2010) 045406.
[38] V. N. Popov and Ph. Lambin, Intermediate frequency Raman spectra of defective single-walled carbon nanotubes, phys. stat. sol. (b) 247 (2010) 892–895.
[37] V. N. Popov and Ph. Lambin, Theoretical phonon dispersion of armchair and metallic zigzag carbon nanotubes beyond the adiabatic approximation, phys. stat. sol. (b) 247 (2010), 2784–2788.
[36] V. N. Popov, Theoretical study of the doping effects on the phonon dispersion of metallic carbon nanotubes, Physica E 44 (2010) 1032-1035.
2009
[35] V. N. Popov, L. Henrard, and Ph. Lambin, Theoretical Raman spectra of graphene with point defects, Carbon 47 (2009) 2448-2455.
[34] V. N. Popov and Ph. Lambin, Theoretical Raman intensity of carbon nanotube (7,0) with point defects, phys. stat. sol. (b) 246 (2009) 2602-2605.
2008
[33] A. Débarre, M. Kobylko, A. M. Bonnot, A. Richard, V. N. Popov, L. Henrard, and M. Kociak, Electronic and Mechanical Coupling of Carbon Nanotubes: A Tunable Resonant Raman Study of Systems with Known Structures, Phys. Rev. Lett. 101 (2008) 197403.
2007
[32] T. Michel, M. Paillet, J.C. Meyer, V. N. Popov, L. Henrard, and J.-L. Sauvajol, E33 and E44 optical transitions in semiconducting single-walled carbon nanotubes: Electron diffraction and Raman experiments, Phys. Rev. B 75 (2007) 155432/1-5.
[31] A. Jungen, V. N. Popov, C. Stampfer, L. Durrer, S. Stoll, and C. Hierold, Raman intensity mapping of single-walled carbon nanotubes, Phys. Rev. B 75 (2007) 041405(R)/1-4.
[30] V. N. Popov and Ph. Lambin, Symmetry-adapted tight-binding calculations of the phonon dispersion and the resonant Raman intensity of the totally symmetric phonons of single-walled carbon nanotubes, Physica E 37 (2007) 97-104.
[29] T. Michel, M. Paillet, J.C. Meyer, V. N. Popov , L. Henrard, P. Poncharal, A. Zahab, and J.-L. Sauvajol, Raman spectroscopy of (n,m)-identified individual single-walled carbon nanotubes, phys. stat. sol. (b) 244 (2007) 3986-3991.
[28] V. N. Popov and Ph. Lambin, Theoretical Raman intensity of the RBM of SWNTs, phys. stat. sol. (b) 244 (2007) 4269-4274
2006
[27] V. N. Popov and Ph. Lambin, Intraband electron-phonon scattering in single-walled carbon nanotubes, Phys. Rev. B 74 (2006) 075415.
[26] M. Paillet, T. Michel, J. C. Meyer, V. N. Popov, L. Henrard, S. Roth, and J.-L. Sauvajol, Raman-active phonons of identified semiconducting single-walled carbon nanotubes, Phys. Rev. Lett. 96 (2006) 257401.
[25] V. N. Popov and Ph. Lambin, Resonant Raman intensity of the totally symmetric phonons of single-walled carbon nanotubes, Phys. Rev. B 73 (2006) 165425/1-11.
[24] V. N. Popov and Ph. Lambin, Radius and chirality dependence of the radial-breathing mode and the G-band phonon modes of single-walled carbon nanotubes, Phys. Rev. B 73 (2006) 085407/1-9.
[23] Ph. Lambin and V. N. Popov, Carbon Nanotubes: Electronic Structure and Physical Properties, in The Encyclopedia of Materials, Science and Technology, 2006 Online Update, Elsevier Ltd, doi:10.1016/B0-08-043152-6/02129-X.
[22] V. N. Popov and Ph. Lambin, Symmetry-adapted tight-binding calculations of the phonon dispersion and the resonant Raman intensity of the totally symmetric phonons of single-walled carbon nanotubes, phys. stat. sol. (b) 243 (2006) 3480-3484.
[21] H. Rauf, T. Pichler, R. Pfeiffer, F. Simon, H. Kuzmany, and V. N. Popov, A Raman study of potassium-intercalated double-wall carbon nanotubes, Phys. Rev. B 74 (2006) 235419/1-10.
2005
[20] V. N. Popov and M. Balkanski, Lattice dynamics of carbon nanotubes, in: Current Topics in Physics. In Honor of Sir Roger J. Elliott. R. A. Barrio & K. K. Kaski (Eds.), Imperial College Press, 2005, 113-150.
[19] V. N. Popov, L. Henrard, and Ph. Lambin, Electron-phonon and electron-photon interactions and resonant Raman scattering from the radial-breathing mode of single-walled carbon nanotubes, Phys. Rev. B 72 (2005) 035436/1-10.
[18] V. N. Popov and Ph. Lambin, Electronic and Vibrational Properties of Single-Walled Carbon Nanotubes, Bulg. J. Phys. 25 (2005) 237-256.
[17] V. N. Popov and L. Henrard, Optical properties of single-walled carbon nanotubes within a non-orthogonal tight-binding model, Fullerenes, Nanotubes, and Carbon Nanostructures, Vol. 13, Suppl.1, 2005, 45-52.
[16] R. Pfeiffer, F. Simon, H. Kuzmany, and V. N. Popov, Fine structure of the radial breathing mode of double-wall carbon nanotubes, Phys. Rev. B 72 (2005) 161404(R)/1-4.
2004
[15] V. N. Popov, Carbon nanotubes: properties and application, Mater. Science Eng. R43 (2004) 61-102.
[14] V. N. Popov, L. Henrard, and Ph. Lambin, Resonant Raman intensity of the radial breathing mode of single-walled carbon nanotubes within a non-orthogonal tight-binding model, Nano Letters 4 (2004) 1795-1799.
[13] V. N. Popov, Curvature effects on the structural, electronic and optical properties of isolated single-walled carbon nanotubes within a symmetry-adapted non-orthogonal tight-binding model, New Journal of Physics 6 (2004) 17/1-17.
[12] V. N. Popov and L. Henrard, Comparative study of the optical properties of single-walled carbon nanotubes within orthogonal and non-orthogonal tight-binding models, Phys. Rev. B 70 (2004) 115407/1-12.
[11] R. Pfeiffer, Ch. Kramberger, F. Simon, H. Kuzmany, V. N. Popov, and H. Kataura, Interaction between Inner and Outer Tubes in DWCNTs, Eur. Phys. J. B 42 (2004) 345-350.
[10] Z. M. Li, V. N. Popov, and Z. K. Tang, A symmetry-adapted force-constant lattice-dynamical model for single-walled carbon nanotubes, Solid State Commun. 130 (2004) 657-661.
2003
[9] V. N. Popov, Lattice dynamics of single-walled boron nitride nanotubes, Phys. Rev. B 67 (2003) 085408/1-6.
[8] V. N. Popov, Theoretical evidence for T1/2 specific heat behavior in carbon nanotube systems, Carbon 42 (2003) 991-995.
2002
[7] V. N. Popov, Low-temperature specific heat of nanotube systems, Phys. Rev. B 66 (2002) 153408/1-4.
[6] V. N. Popov and L. Henrard, Breathinglike phonon modes in multiwalled carbon nanotubes, Phys. Rev. B 65 (2002) 235415/1-6.
2001
[5] V. N. Popov and L. Henrard, Evidence for the existence of two breathinglike phonon modes in infinite bundles of single-walled carbon nanotubes, Phys. Rev. B 63 (2001) 233407-233410.
[4] L. Henrard, V. N. Popov, and A. Rubio, Influence of Packing on the Vibrational Properties of Infinite and Finite Bundles of Carbon Nanotubes, Phys. Rev. B 64 (2001) 205403/1-10.
2000
[3] V. N. Popov, V. E. Van Doren, and M. Balkanski, Elastic properties of crystals of single-walled carbon nanotubes, Solid State Commun. 114 (2000) 395-399.
[2] V. N. Popov, V. E. Van Doren, and M. Balkanski, Elastic properties of single-walled carbon nanotubes, Phys. Rev. B 61 (2000) 3078-3084.
1999
[1] V. N. Popov, V. E. Van Doren, and M. Balkanski, Lattice dynamics of single-walled carbon nanotubes, Phys. Rev. B 59 (1999) 8355-8358.
©Valentin Popov, 03.03.2024