3rd National Congress on Physical Sciences, 29 Sep. – 2 Oct. 2016, Sofia Section: Mathematical Physics

Boundedness of Two-Point Correlators Covariant under the Meta-Conformal Algebra

Stoimen Stoimenov¹, Malte Henkel^{2,3}

¹Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia 1784, Bulgaria

²Rechnergestützte Physik der Werkstoffe, Institut für Baustoffe (IfB), ETH Zürich, Stefano-Franscini-Platz 3, CH - 8093 Zürich, Switzerland

³Groupe de Physique Statistique, Département de Physique de la Matière et des Matériaux, Institut Jean Lamour (CNRS UMR 7198), Université de Lorraine Nancy, B.P. 70239, F – 54506 Vandœuvre lès Nancy Cedex, France

Abstract. Covariant two-point functions are derived from Ward identities. For several extensions of dynamical scaling, notably Schrödingerinvariance, conformal Galilei invariance or meta-conformal invariance, the results become unbounded for large time- or space-separations. Standard ortho-conformal invariance does not have this problem. An algebraic procedure is presented which corrects this difficulty for metaconformal invariance in (1+1) dimensions. A canonical interpretation of meta-conformal correlators can be obtained from meta-conformal invariance through a simple contraction. All these two-point functions are bounded at large separations, for sufficiently positive values of the scaling exponents.

PACS codes: 98.80.-k, 04.50.Kd, 98.80.Jk

1 Introduction

Dynamical symmetries are powerful tools in investigations of many complex systems. The best-known examples are *conformal invariance* in equilibrium phase transitions [4, 6] and *Schrödinger-invariance* in timedependent phenomena [8, 12]. One of the most elementary predictions of dynamical symmetries concerns the form of the co-variant two-point functions, to be derived form the (e.g. conformal or Schrödinger) Ward identities, [6, 12]. These are built from quasi-primary scaling operators $\phi_i(t_i, r_i)$, depending locally on a 'time' coordinate $t_i \in \mathbb{R}$ and a 'space' coordinate $r_i \in \mathbb{R}^d$. Since both conformal and Schrödinger groups contain time- and space-translations, and also spatial rotations, we can restrict

to the difference $t := t_1 - t_2$ and the absolute value $r := |\mathbf{r}| = |\mathbf{r}_1 - \mathbf{r}_2|$. For conformal [18] and Schrödinger-invariance [8], respectively, the covariant two-point functions of *scalar* quasi-primary operators read (up to a global normalisation constant)

$$C_{12,conf}(t; \mathbf{r}) = \langle \phi_1(t, \mathbf{r})\phi_2(0, \mathbf{0}) \rangle = \delta_{x_1, x_2} \left[t^2 + r^2 \right]^{-x_1}$$
(1)

$$R_{12,Schr}(t; \mathbf{r}) = \left\langle \phi_1(t, \mathbf{r}) \widetilde{\phi}_2(0, \mathbf{0}) \right\rangle =$$
$$= \delta_{x_1, x_2} \delta(\mathcal{M}_1 + \widetilde{\mathcal{M}}_2) t^{-x_1} \exp\left[-\frac{\mathcal{M}_1}{2} \frac{r^2}{t}\right]$$
(2)

The properties of the conformally invariant two-point function are described by the scaling dimensions x_i . It is a *correlator* and is symmetric under permutation of the two scaling operators, viz. $C_{12}(t; \mathbf{r}) = C_{21}(-t; -\mathbf{r})$. The result (1) is a physically reasonable correlator which decays to zero, if $x_i > 0$, for large time- or space separations, viz. $|t| \to \infty$ or $r \to \infty$.

The Schrödinger-invariant two-point function is a (linear) response function – recast here formally as a correlator by appealing to Janssen-de Dominicis theory [21], where $\tilde{\phi}_i$ is the response operator conjugate to the scaling operator ϕ_i . The two-point function is now characterised by the pair (x_i, \mathcal{M}_i) of a scaling dimension and a mass \mathcal{M}_i associated to each scaling operator ϕ_i . For 'usual' scaling operators, masses are positive by convention, whereas response operators $\tilde{\phi}_i$ have formally negative masses, viz. $\tilde{\mathcal{M}}_i = -\mathcal{M}_i < 0$. Because of causality, a response function must vanish for t < 0, viz. $R_{12} = 0$ but one has $R_{12} \neq 0$ for t > 0; hence it is maximally asymmetric under permutation of the scaling operators. The result (2) of Schrödinger-invariance does not contain the causality requirement t > 0. In addition, it is *not* obvious why the response should vanish for large separations, even if $x_i > 0$ is admitted. Although one might insert these features by hand, it is preferable to derive such conditions formally. One may do so following the procedure [11]:

- (i) consider the mass *M* as an additional coordinate and dualise by Fourier-transforming with respect to *M_i*, which introduces dual coordinates *ζ_i*. The terminology is borrowed from non-relativistic versions of the AdS/CFT correspondence.
- (ii) construct an extension of the Schrödinger Lie algebra sch(d) := sch(d) ⊕ CN, where the new generator N is in the Cartan sub-algebra of sch(d).
- (iii) use the extended Schrödinger Ward identities, in the dual coordinates, to find the co-variant two-point function $\widehat{R}(\zeta_1 \zeta_2, t, r)$.

(iv) finally, transform back to the fixed masses M_i . The result is [11, 13]

$$R_{12,\widetilde{Schr}}(t;\boldsymbol{r}) = \delta_{x_1,x_2}\delta(\mathcal{M}_1 + \widetilde{\mathcal{M}}_2)\,\Theta(\mathcal{M}_1t)\,t^{-x_1}\exp\left[-\frac{\mathcal{M}_1}{2}\frac{r^2}{t}\right]$$
(3)

With the convention $M_1 > 0$, the Heaviside function Θ expresses the causality condition t > 0. In addition, if $x_i > 0$, the response function decays to zero for large time- or space separations, as physically expected.

A similar problem with boundedness of two-point function arise also for *conformal galilean algebra* [2,9,10,16,17] $cga(d)^1$. However, for the cga(d) algebra, it has been shown recently that a procedure analogous to the one of the Schrödinger algebra, as outlined above, can be applied to assure the boundedness of two-pint function which in this case does obey the symmetry relations of a correlator [14].

In this paper² we wish to demonstrate that an algebraically sound procedure, as outlined above, to the formulation of Ward identities which physically reasonable results, can be applied to *meta-conformal algebra*. This may not appear obvious, since it is semi-simple, in contrast to Schrödinger and conformal galilean algebra which are not. Our results are stated in Theorems 1 and 2 in section 4.

2 Meta-conformal algebra and two-point function

We shall call *meta-conformal algebra* mconf(d) a non-standard representation of conformal algebra which leads to a two-point correlation function distinct from (1). To be precise, we shall distinguish between orthoand meta-conformal transformations.³

Definition 1. (*i*) Meta-conformal transformations are maps $(t, r) \mapsto (t', r') = M(t, r)$, depending analytically on several parameters, such that they form a Lie group. The associated Lie algebra is isomorphic to the conformal Lie algebra conf(d).

(ii) Ortho-conformal transformations (called 'conformal transformations' for brevity) are those meta-conformal transformations $(t,r) \mapsto (t',r') = O(t,r)$ which keep the angles in the time-space of points $(t,r) \in \mathbb{R}^{1+d}$ invariant.

In this paper, we study the meta-conformal transformations, in (1 + 1) time and space dimensions, with the following infinitesimal generators

 $^{^{1}}$ cga(d) is non-isomorphic to either the standard Galilei algebra or else the Schrödinger algebra sch(d). It is a maximal finite-dimensional sub-algebra of non-semi-simple 'altern-Virasoro algebra' altv(1) (but without central charges) [3, 7, 9, 11]

²Following mainly our original work [20]

³From the greek prefixes $o\varrho\theta o$: right, standard; and $\mu\varepsilon\tau\alpha$: of secondary rank.

[10, 12]:

$$X_{n} = -t^{n+1}\partial_{t} - \mu^{-1}[(t+\mu r)^{n+1} - t^{n+1}]\partial_{r}$$
$$-(n+1)\frac{\gamma}{\mu}[(t+\mu r)^{n} - t^{n}] - (n+1)xt^{n}$$
$$Y_{n} = -(t+\mu r)^{n+1}\partial_{r} - (n+1)\gamma(t+\mu r)^{n}$$
(4)

such that μ^{-1} can be interpreted as a velocity ('speed of light or sound') and where x, γ are constants ('scaling dimension' and 'rapidity'). The generators obey the Lie algebra, for $n, m \in \mathbb{Z}$

$$[X_n, X_m] = (n - m)X_{n+m}, \quad [X_n, Y_m] = (n - m)Y_{n+m}$$

$$[Y_n, Y_m] = \mu(n - m)Y_{n+m}$$
(5)

The isomorphism of (5) with the conformal Lie algebra conf(2) is seen for example in [10, 14, 20].

The meta-conformal Lie algebra (5) acts as a dynamical symmetry on the linear advection equation [15]

$$S\phi(t,r) = (-\mu\partial_t + \partial_r)\phi(t,r) = 0$$
(6)

in the sense that a solution ϕ of $S\phi = 0$, with scaling dimension $x_{\phi} = x = \gamma/\mu$, is mapped to another solution of the same equation. This follows from $(n \in \mathbb{Z})$

$$[\mathcal{S}, Y_n] = 0, \quad [\mathcal{S}, X_n] = -(n+1)t^n \hat{S} + n(n+1)(\mu x - \gamma)t^{n-1}$$
(7)

Hence the space of solutions of $S\phi = 0$ is meta-conformal invariant [10] (extended to Jeans-Poisson systems in [19]).

Now, quasi-primary scaling operators [4] are characterised by the parameters (x_i, γ_i) (μ is simply a global dimensionful scale) and by co-variance under the maximal finite-dimensional sub-algebra $\langle X_{\pm 1,0}, Y_{\pm 1,0} \rangle \cong$ $\mathfrak{sl}(2, \mathbb{R}) \oplus \mathfrak{sl}(2, \mathbb{R})$ for $\mu \neq 0$. Explicitly

$$\begin{aligned} X_{-1} &= -\partial_t , \quad X_0 = -t\partial_t - r\partial_r - x \\ X_1 &= -t^2\partial_t - 2tr\partial_r - \mu r^2\partial_r - 2xt - 2\gamma r \\ Y_{-1} &= -\partial_r , \quad Y_0 = -t\partial_r - \mu r\partial_r - \gamma \\ Y_1 &= -t^2\partial_r - 2\mu tr\partial_r - \mu^2 r^2\partial_r - 2\gamma t - 2\gamma \mu r \end{aligned}$$
(8)

Here, the generators X_{-1}, Y_{-1} describe time- and space-translations, Y_0 is a (conformal) Galilei transformation, X_0 gives the dynamical scaling $t \mapsto \lambda t$ of $r \mapsto \lambda r$ (with $\lambda \in \mathbb{R}$) such that the so-called 'dynamical exponent' z = 1 since both time and space are re-scaled in the same way and finally X_{+1}, Y_{+1} give 'special' meta-conformal transformations.

4

Using the generators (8) (in their two-body forms $X_n^{[2]}, Y_n^{[2]}$) we construct the meta-conformal Ward identities $X_n^{[2]} \langle \phi_1 \phi_2 \rangle = Y_n^{[2]} \langle \phi_1 \phi_2 \rangle = 0$. One obtains the co-variant two-point function, up to normalisation [10, 12]

$$\langle \phi_1(t_1, r_1)\phi_2(t_2, r_2)\rangle = \delta_{x_1, x_2} \delta_{\gamma_1, \gamma_2} \left(t_1 - t_2\right)^{-2x_1} \left(1 + \mu \frac{r_1 - r_2}{t_1 - t_2}\right)^{-2\gamma_1/\mu} \tag{9}$$

clearly *distinct* from the result (1) of ortho-conformal invariance. However, the result (9) raises immediately the following questions:

- 1. is $\langle \phi_1 \phi_2 \rangle$ a correlator or rather a response, since neither of the symmetry or causality conditions are obeyed ?
- 2. even if $x_i > 0$ and $\gamma_i/\mu > 0$, why does $\langle \phi_1 \phi_2 \rangle$ not always decay to zero for large separations $|t_1 t_2| \to \infty$ or $|r_1 r_2| \to \infty$?
- 3. why is there a singularity at $\mu(r_1 r_2) = -(t_1 t_2)$?

3 Two-point function in dual space

Our construction follows the same steps as outlined above which have already been used to recast the co-variant two-point functions of Schrödinger- and conformal Galilean invariance into a physically reasonable form, see [11, 13, 14].

First, we consider the 'rapidity' γ as a new variable and dualise it through a Fourier transformation, which gives the quasi-primary scaling operator

$$\hat{\phi}(\zeta, t, r) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \mathrm{d}\gamma \ e^{\mathrm{i}\gamma\zeta} \ \phi_{\gamma}(t, r) \tag{10}$$

The representation (4) of the meta-conformal algebra becomes

$$X_{n} = \frac{i(n+1)}{\mu} \left[(t+\mu r)^{n} - t^{n} \right] \partial_{\zeta} -t^{n+1} \partial_{t} - \frac{1}{\mu} \left[(t+\mu r)^{n+1} - t^{n+1} \right] \partial_{r} - (n+1)xt^{n} Y_{n} = i(n+1) \left(t+\mu r \right)^{n} \partial_{\zeta} - \left(t+\mu r \right)^{n+1} \partial_{r}$$
(11)

Second, we seek an extension of the Cartan sub-algebra \mathfrak{h} by looking for a new generator N such that $[X_n, N] = \alpha_n X_n$ and $[Y_m, N] = \beta_m Y_m$ where α_n, β_m are constants to be determined. It turned out [20] that N must have the form

$$N := -r\partial_r - (\zeta + c)\partial_{\zeta} + \mu\partial_{\mu} - \nu \tag{12}$$

$$[X_n, N] = 0 , \ [Y_n, N] = -Y_n \ n \in \mathbb{Z}.$$
 (13)

and satisfy (13). *N* is a dynamical symmetry of (6), since [S, N] = -S. This achieves the construction of the extended meta-conformal algebra $\widetilde{mconf}(2) := mconf(2) \oplus \mathbb{C}N$, with commutators (5,13).

Third, co-variant two-point functions of quasi-primary scaling operators are found from the Ward identities $X_n^{[2]} \langle \phi_1 \phi_2 \rangle = Y_n^{[2]} \langle \phi_1 \phi_2 \rangle = N^{[2]} \langle \phi_1 \phi_2 \rangle = 0$, with $X_n, Y_n, N \in \widetilde{\mathrm{mconf}}(2)$ and $n = \pm 1, 0$ [12]. Given the form of N, we also consider μ to a be further variable and set

$$\langle \hat{\phi}(\zeta_1, t_1, r_1; \mu_1) \hat{\phi}(\zeta_2, t_2, r_2; \mu_2) \rangle = \hat{F}(\zeta_1, \zeta_2, t_1, t_2, r_1, r_2; \mu_1, \mu_2)$$
(14)

Clearly, co-variance under X_{-1} and Y_{-1} implements time- and spacetranslation-invariance, such that $\hat{F} = \hat{F}(\zeta_1, \zeta_2, t, r; \mu_1, \mu_2)$, with $t = t_1 - t_2$ and $r = r_1 - r_2$. Next, co-variance under other generators of $\mathfrak{mconf}(2)$ provides the system

$$X_0: (t\partial_t + r\partial_r + x_1 + x_2)\hat{F} = 0$$
(15)

$$Y_0: (t\partial_r + \mu_1 r \partial_r - i(\partial_{\zeta_1} + \partial_{\zeta_2}) + (\mu_1 - \mu_2) r_2 \partial_r) \hat{F} = 0$$
(16)

$$X_1: (ir(\partial_{\zeta_1} - \partial_{\zeta_2}) - t(x_1 - x_2)) F(\zeta_1, \zeta_2, t, r; \mu) = 0$$
(17)

$$Y_1: (t + \mu r) (\partial_{\zeta_1} - \partial_{\zeta_2}) \dot{F}(\zeta_1, \zeta_2, t, r; \mu) = 0$$
(18)

$$N: (r\partial_r + (\zeta_+ + c)\partial_{\zeta_+} - \mu\partial_\mu + \nu_1 + \nu_2) \hat{F}(\zeta_+, t, r; \mu) = 0.$$
 (19)

Since \hat{F} must not any longer depend explicitly on r_2 , (16) shows that $\mu_1 = \mu_2 =: \mu$. Similarly, eq. (18) states that $(\partial_{\zeta_1} - \partial_{\zeta_2})\hat{F} = 0$ such that $\hat{F} = \hat{F}(\zeta_+, t, r; \mu)$, with $\zeta_{\pm} := \frac{1}{2}(\zeta_1 \pm \zeta_2)$. Then eq. (17) produces $x_1 = x_2$.

The three conditions (15,16,19) (we shall absorb from now on c into a translation of ζ_+) fix the function $\hat{F}(\zeta_+, t, r, ; \mu)$ which depends on three variables and the constant μ , and also on the pairs of constants (x_1, ν_1) and (x_2, ν_2) which characterise the two quasi-primary scaling operators $\hat{\phi}_{1,2}$. Solving eq. (15), it follows that $\hat{F}(\zeta_+, t, r; \mu) = t^{-2x} \hat{f}(u, \zeta_+, \mu)$ with u = r/t and $x = x_1 = x_2$. Changing variables according to $v = \zeta_+ + iu$ and $\hat{f}(u, \zeta_+, \mu) = \hat{g}(u, v, \mu)$, eqs. (16,19) leads to $\hat{g}(u, v, \mu) = \hat{G}(w, \mu)$ and finally⁴

$$\hat{G}(w,\mu) = \hat{G}_0(\mu)w^{-\nu_1-\nu_2} = \hat{G}_1(\mu)\left(\zeta_+ + i\frac{\ln(1+\mu u)}{\mu}\right)^{-\nu_1-\nu_2}.$$
 (20)

Since μ is merely a parameter, $\hat{G}_1(\mu)$ is just a normalisation constant.

Proposition. *The dual two-point function, covariant under the generators* $X_{\pm 1,0}, Y_{\pm 1,0}, N$ of the dual representation (11,12) of the meta-conformal al-

⁴for more details see [20]

gebra $\mathfrak{mconf}(2)$, is up to normalisation

$$\hat{F}(\zeta_1, \zeta_2, t, r) = \langle \hat{\phi}_1(t, r, \zeta_1) \hat{\phi}_2(0, 0, \zeta_2) \rangle$$

= $\delta_{x_1, x_2} |t|^{-2x_1} \left(\frac{\zeta_1 + \zeta_2}{2} + i \frac{\ln(1 + \mu r/t)}{\mu} \right)^{-\nu_1 - \nu_2}$. (21)

4 Inverse dual transformation

Forth, to un-dualise, we write $\hat{F}=\delta_{x_1,x_2}\,|t|^{-2x_1}\hat{f}_\lambda(\zeta_+)$ such that

$$f_{\lambda}(\zeta_{+}) := \hat{f}(\zeta_{+} + i\lambda) = (\zeta_{+} + i\lambda)^{-\nu_{1}-\nu_{2}}, \quad \lambda := \frac{\ln(1 + \mu r/t)}{\mu}.$$
 (22)

A well-known mathematical result on Fourier analysis on Hardy spaces states there exist the following integral representation ($\hat{\mathcal{F}}_{\pm}(\gamma_{+})$) are square-integrable functions) [1, 14, 20]

$$\sqrt{2\pi} \, \hat{f}(\zeta_{+} + i\lambda) = \Theta(\lambda) \int_{0}^{\infty} d\gamma_{+} \, e^{+i(\zeta_{+} + i\lambda)\gamma_{+}} \hat{\mathcal{F}}_{+}(\gamma_{+}) + \Theta(-\lambda) \int_{0}^{\infty} d\gamma_{+} \, e^{-i(\zeta_{+} + i\lambda)\gamma_{+}} \hat{\mathcal{F}}_{-}(\gamma_{+}).$$
(23)

The inverse Fourier transformation is found by distinguishing the cases $\lambda > 0$ and $\lambda < 0$. In the case $\lambda > 0$, we have from (23)

$$F = \frac{|t|^{-2x}}{\pi\sqrt{2\pi}} \hat{G}_{1}(\mu) \int_{\mathbb{R}^{2}} d\zeta_{+} d\zeta_{-} e^{-i(\gamma_{1}+\gamma_{2})\zeta_{+}} e^{-i(\gamma_{1}-\gamma_{2})\zeta_{-}} \times \\ \times \int_{\mathbb{R}} d\gamma_{+} \Theta(\gamma_{+}) \hat{\mathcal{F}}_{+}(\gamma_{+}) e^{-\gamma_{+}\lambda} e^{i\gamma_{+}\zeta_{+}} \\ = \frac{|t|^{-2x}}{\pi\sqrt{2\pi}} \hat{G}_{1}(\mu) \int_{\mathbb{R}} d\gamma_{+} \Theta(\gamma_{+}) \hat{\mathcal{F}}(\gamma_{+}) e^{-\gamma_{+}\lambda} \times \\ \times \int_{\mathbb{R}} d\zeta_{-} e^{-(\gamma_{1}-\gamma_{2})\zeta_{-}} \int_{\mathbb{R}} d\zeta_{+} e^{i(\gamma_{+}-\gamma_{1}-\gamma_{2})\zeta_{+}} \\ = \delta_{x_{1},x_{2}} \delta(\gamma_{1}-\gamma_{2}) \Theta(\gamma_{1}) |t|^{-2x_{1}} f_{1}(\mu) f_{2}(\gamma_{1}) \exp(-2\gamma_{1} \ln(1+\mu r/t)/\mu) \\ = \delta_{x_{1},x_{2}} \delta(\gamma_{1}-\gamma_{2}) \Theta(\gamma_{1}) f_{1}(\mu) f_{2}(\gamma_{1}) |t|^{-2x_{1}} (1+\mu r/t)^{-2\gamma_{1}/\mu}.$$
(24)

where in the third line two delta functions where recognised, and f_1, f_2 contain unspecified dependencies on μ and γ_1 , respectively.⁵ In the case $\lambda < 0$, we have in quite an analogous way

$$F = \delta_{x_1, x_2} \delta(\gamma_1 - \gamma_2) \Theta(-\gamma_1) |t|^{-2x_1} f_1(\mu) f_2(-\gamma_1) \exp\left(-2\gamma_1 \ln(1 + \mu r/t)/\mu\right)$$

= $\delta_{x_1, x_2} \delta(\gamma_1 - \gamma_2) \Theta(-\gamma_1) f_1(\mu) f_2(-\gamma_1) |t|^{-2x_1} (1 + \mu r/t)^{-2\gamma_1/\mu}.$ (25)

⁵An eventual shift $\zeta_+ \mapsto \zeta_+ + c$, see (19), can be absorbed into the re-definition $\hat{\mathcal{F}}(\gamma_+) e^{-\gamma_+ c} \mapsto \hat{\mathcal{F}}(\gamma_+)$.

The meaning of the signs of λ , is carefully explained in [20]. Under *convention that* $\mu > 0$ we have always $\gamma_1 r/t = |\gamma_1 r/t| > 0$, independently of the sign of λ . Therefore, we can always write for the time-space argument

$$\mu \frac{r}{t} = \frac{\mu}{\gamma_1} \frac{\gamma_1 r}{t} = \frac{\mu}{\gamma_1} \left| \frac{\gamma_1 r}{t} \right|$$
(26)

(if $\gamma_1 \neq 0$) and we have identified the source of the non-analyticity in the two-point function. Eqs. (24,25,26) combine to give our main result.

Theorem 1. With the convention that $\mu = \mu_1 = \mu_2 > 0$, and if $\nu_1 + \nu_2 > \frac{1}{2}$, the two-point correlator, co-variant under the representation (8), enhanced by (12), of the extended meta-conformal algebra $\widetilde{\text{conf}}(2)$, reads up to normalisation

$$C_{12}(t,r) = \langle \phi_1(t,r)\phi_2(0,0) \rangle = \delta_{x_1,x_2}\delta_{\gamma_1,\gamma_2} |t|^{-2x_1} \left(1 + \frac{\mu}{\gamma_1} \left|\frac{\gamma_1 r}{t}\right|\right)^{-2\gamma_1/\mu}.$$
(27)

This form has the correct symmetry $C_{12}(t,r) = C_{21}(-t,-r)$ under permutation of the scaling operators of a correlator. For $\gamma_1 > 0$ and $x_1 > 0$, the correlator decays to zero for $t \to \pm \infty$ or $r \to \pm \infty$.

In the limit $\mu \to 0$, the extended meta-conformal algebra (5,13) contracts to the extended altern-Virasoro algebra $\widetilde{\mathfrak{altv}}(1)$, whose maximal finite-dimensional sub-algebra is the extended conformal Galilean algebra $\widetilde{\operatorname{cga}}(1) = \operatorname{cga}(1) \oplus \mathbb{C}N$. We recover as a special limit case:

Theorem 2. [14] If $\nu_1 + \nu_2 > \frac{1}{2}$, the two-point correlator, co-variant under the extended conformal Galilean algebra $\widetilde{\text{cga}}(1)$, reads (up to normalisation)

$$C_{12}(t,r) = \langle \phi_1(t,r)\phi_2(0,0) \rangle = \delta_{x_1,x_2}\delta_{\gamma_1,\gamma_2} |t|^{-2x_1} \exp\left(-\left|\frac{2\gamma_1 r}{t}\right|\right).$$
(28)

Any treatment of the cga which neglects this non-analyticity cannot be correct.

5 Conclusion

Summarising, we have shown that for time-space meta-conformal invariance, as well as for its $\mu \rightarrow 0$ limit conformal galilean invariance (or BMS-invariance), the co-variant two-point correlators are given by eqs. (27,28) and are explicitly *non-analytic* in the temporal-spatial variables. Any form of the Ward identities which implicitly assumes such an analyticity cannot be correct. In our construction of physically sensible Ward identities, we extended the Cartan sub-algebra to a higher rank. The extra generator N provides an important ingredient in the demonstration that in direct space, the meta-conformally and galilean-conformally covariant two-point correlators rather are *distributions*.

Acknowledgements

This work was supported by PHC Rila and from the Bulgarian National Science Fund Grant DFNI - T02/6.

References

- N.I. Akhiezer (1984) Lectures on Integral Transforms, Translation of mathematical monographs 70, Charkiv University /American Mathematical Society (Providence 1988).
- [2] A. Bagchi, R. Gopakumar (2009) Galilean conformal algebras and AdS/CFT. *JHEP 07*, **0**37.
- [3] A. Bagchi, R. Gopakumar, I. Mandal, A. Miwa (2010) Conformal Galilean algebra in two dimensions. *JHEP 08*, 004.
- [4] A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov (1984) Infinite conformal symmetry in two-dimensional quantum field theory. *Nucl. Phys.* B241, pp. 333.
- [5] T.H. Boyer (1967) Conserved currents, renormalization and the Ward identity. *Ann. of Phys.* **44**, pp. 1.
- [6] P. di Francesco, P. Mathieu and D. Sénéchal (1997), Conformal field-theory, Springer.
- [7] P. Havas and J. Plebanski (1978) Conformal extensions of the Galilei group and their relation to the Schrödinger group. *J. Math. Phys.* 19, pp. 482.
- [8] M. Henkel (1994) Schrödinger-invariance and strongly anisotropic critical systems. J. Stat. Phys. 75 pp. 1023.
- [9] M. Henkel (1997), Extended scale-invariance in strongly anisotropic equilibrium critical systems. *Phys. Rev. Lett.* 78 pp.1940.
- [10] M. Henkel (2002) Phenomenology of local scale-invariance: from conformal invariance to dynamical scaling. *Nucl. Phys.* **B**641, pp.405.
- [11] M. Henkel and J. Unterberger (2003) Schrödinger invariance and spacetime symmetries. *Nucl. Phys.* B660 pp. 407.
- [12] M. Henkel and M. Pleimling (2010) Non-equilibrium phase transitions vol.2: ageing and dynamical scaling far from equilibrium, Springer, Heidelberg.
- [13] M. Henkel (2014), Causality from dynamical symmetry: an example from local scale-invariance, A. Makhlouf *et al.* (EDS), Algebra, Geometry and Mathematical Physics, Springer Proc. Math. & Statistics **8**5, pp. 511.
- [14] M. Henkel (2015) Dynamical symmetries and causality in non-equilibrium phase transitions. *Symmetry* **7**, pp. 2108.
- [15] R.J. LeVeque (1999) Numerical methods for conservation laws, 2nd ed., Birkhäuser, Basel.
- [16] D. Martelli and Y. Tachikawa (2010) Comments on Galilean conformal field theories and their geometric realization. *JHEP 05* pp. 091.
- [17] J. Negro, M.A. del Olmo and A. Rodríguez-Marco (1997) Nonrelativistic conformal groups. *J. Math. Phys.* **3**8 pp. 3786.
 J. Negro, M.A. del Olmo and A. Rodríguez-Marco (1997) Nonrelativistic conformal groups II, *J. Math. Phys.* **3**8 pp. 3810.

- [18] A.M. Polyakov (1970) Conformal symmetry of critical fluctuations. Sov. Phys. JETP Lett. 12 pp. 381.
- [19] S. Stoimenov and M. Henkel(2015) From conformal invariance towards dynamical symmetries of the collisionless Boltzmann equation. *Symmetry* 7 pp. 1595.
- [20] M. Henkel and S. Stoimenov (2016) Meta-conformal invariance and the boundedness of two-point correlation functions. At press in J. Phys A: Math. Theor. [arxiv:1607.00685].
- [21] U.C. Täuber (2014) Critical dynamics, Cambridge University Press.
- [22] P.-M. Zhang and P.A. Horváthy (2010) Non-relativistic conformal symmetries in fluid mechanics, Eur. Phys. J. **C**65 pp. 607.