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Abstract. Covariant two-point functions are derived from Ward identi-
ties. For several extensions of dynamical scaling, notably Schrödinger-
invariance, conformal Galilei invariance or meta-conformal invariance,
the results become unbounded for large time- or space-separations.
Standard ortho-conformal invariance does not have this problem. An
algebraic procedure is presented which corrects this difficulty for meta-
conformal invariance in (1+1) dimensions. A canonical interpretation of
meta-conformally covariant two-point functions as correlators follows.
Galilei-conformal correlators can be obtained from meta-conformal in-
variance through a simple contraction. All these two-point functions are
bounded at large separations, for sufficiently positive values of the scal-
ing exponents.

PACS codes: 98.80.-k, 04.50.Kd, 98.80.Jk

1 Introduction

Dynamical symmetries are powerful tools in investigations ofmany com-
plex systems. The best-known examples are conformal invariance in
equilibrium phase transitions [4, 6] and Schrödinger-invariance in time-
dependent phenomena [8, 12]. One of the most elementary predictions
of dynamical symmetries concerns the form of the co-variant two-point
functions, to be derived form the (e.g. conformal or Schrödinger) Ward
identities, [6, 12]. These are built from quasi-primary scaling operators
φi(ti, ri), depending locally on a ‘time’ coordinate ti ∈ R and a ‘space’ co-
ordinate ri ∈ Rd. Since both conformal and Schrödinger groups contain
time- and space-translations, and also spatial rotations, we can restrict
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to the difference t := t1 − t2 and the absolute value r := |r| = |r1 − r2|.
For conformal [18] and Schrödinger-invariance [8], respectively, the co-
variant two-point functions of scalar quasi-primary operators read (up
to a global normalisation constant)

C12,conf (t; r) = 〈φ1(t, r)φ2(0,0)〉 = δx1,x2

[
t2 + r2

]−x1 (1)

R12,Schr(t; r) =
〈
φ1(t, r)φ̃2(0,0)

〉
=

= δx1,x2
δ(M1 + M̃2) t−x1 exp

[
−M1

2

r2

t

]
(2)

The properties of the conformally invariant two-point function are de-
scribed by the scaling dimensions xi. It is a correlator and is symmet-
ric under permutation of the two scaling operators, viz. C12(t; r) =
C21(−t;−r). The result (1) is a physically reasonable correlator which
decays to zero, if xi > 0, for large time- or space separations, viz. |t| → ∞
or r →∞.
The Schrödinger-invariant two-point function is a (linear) response func-
tion – recast here formally as a correlator by appealing to Janssen-de
Dominicis theory [21], where φ̃i is the response operator conjugate to
the scaling operator φi. The two-point function is now characterised by
the pair (xi,Mi) of a scaling dimension and a massMi associated to
each scaling operator φi. For ‘usual’ scaling operators, masses are posi-
tive by convention, whereas response operators φ̃i have formally negative
masses, viz. M̃i = −Mi < 0. Because of causality, a response function
must vanish for t < 0, viz. R12 = 0 but one has R12 6= 0 for t > 0; hence
it is maximally asymmetric under permutation of the scaling operators.
The result (2) of Schrödinger-invariance does not contain the causality
requirement t > 0. In addition, it is not obvious why the response should
vanish for large separations, even if xi > 0 is admitted. Although one
might insert these features by hand, it is preferable to derive such con-
ditions formally. One may do so following the procedure [11]:

(i) consider the massM as an additional coordinate and dualise by
Fourier-transforming with respect to Mi, which introduces dual
coordinates ζi. The terminology is borrowed from non-relativistic
versions of the AdS/CFT correspondence.

(ii) construct an extension of the Schrödinger Lie algebra s̃ch(d) :=
sch(d) ⊕ CN , where the new generator N is in the Cartan sub-
algebra of s̃ch(d).

(iii) use the extended Schrödinger Ward identities, in the dual coordi-
nates, to find the co-variant two-point function R̂(ζ1 − ζ2, t, r).

2



Meta-Conformal Invariance

(iv) finally, transform back to the fixedmassesMi. The result is [11,13]

R
12,S̃chr

(t; r) = δx1,x2
δ(M1 + M̃2) Θ(M1t) t

−x1 exp

[
−M1

2

r2

t

]
(3)

With the conventionM1 > 0, the Heaviside function Θ expresses
the causality condition t > 0. In addition, if xi > 0, the response
function decays to zero for large time- or space separations, as
physically expected.

A similar problem with boundedness of two-point function arise also for
conformal galilean algebra [2,9,10,16,17] cga(d)1. However, for the cga(d)
algebra, it has been shown recently that a procedure analogous to the one
of the Schrödinger algebra, as outlined above, can be applied to assure
the boundedness of two-pint function which in this case does obey the
symmetry relations of a correlator [14].

In this paper2 we wish to demonstrate that an algebraically sound pro-
cedure, as outlined above, to the formulation of Ward identities which
physically reasonable results, can be applied to meta-conformal alge-
bra. This may not appear obvious, since it is semi-simple, in contrast to
Schrödinger and conformal galilean algebra which are not. Our results
are stated in Theorems 1 and 2 in section 4.

2 Meta-conformal algebra and two-point function

We shall call meta-conformal algebra mconf(d) a non-standard represen-
tation of conformal algebra which leads to a two-point correlation func-
tion distinct from (1). To be precise, we shall distinguish between ortho-
and meta-conformal transformations.3

Definition 1. (i) Meta-conformal transformations are maps (t, r) 7→
(t′, r′) = M(t, r), depending analytically on several parameters, such that
they form a Lie group. The associated Lie algebra is isomorphic to the con-
formal Lie algebra conf(d).
(ii) Ortho-conformal transformations (called ‘conformal transformations’
for brevity) are those meta-conformal transformations (t, r) 7→ (t′, r′) =
O(t, r) which keep the angles in the time-space of points (t, r) ∈ R1+d in-
variant.

In this paper, we study the meta-conformal transformations, in (1 + 1)
time and space dimensions, with the following infinitesimal generators

1cga(d) is non-isomorphic to either the standard Galilei algebra or else the Schrödinger
algebra sch(d). It is a maximal finite-dimensional sub-algebra of non-semi-simple ‘altern-
Virasoro algebra’ altv(1) (but without central charges) [3,7,9,11]

2Following mainly our original work [20]
3From the greek prefixes o%θo: right, standard; and µετα: of secondary rank.
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[10,12]:

Xn = −tn+1∂t − µ−1[(t+ µr)n+1 − tn+1]∂r

−(n+ 1)
γ

µ
[(t+ µr)n − tn]− (n+ 1)xtn

Yn = −(t+ µr)n+1∂r − (n+ 1)γ(t+ µr)n (4)

such that µ−1 can be interpreted as a velocity (‘speed of light or sound’)
andwhere x, γ are constants (‘scaling dimension’ and ‘rapidity’ ). The gen-
erators obey the Lie algebra, for n,m ∈ Z

[Xn, Xm] = (n−m)Xn+m, [Xn, Ym] = (n−m)Yn+m

[Yn, Ym] = µ(n−m)Yn+m (5)

The isomorphism of (5) with the conformal Lie algebra conf(2) is seen for
example in [10,14,20].

Themeta-conformal Lie algebra (5) acts as a dynamical symmetry on the
linear advection equation [15]

Sφ(t, r) = (−µ∂t + ∂r)φ(t, r) = 0 (6)

in the sense that a solution φ of Sφ = 0, with scaling dimension xφ = x =
γ/µ, is mapped to another solution of the same equation. This follows
from (n ∈ Z)

[S, Yn] = 0, [S, Xn] = −(n+ 1)tnŜ + n(n+ 1)(µx− γ)tn−1 (7)

Hence the space of solutions of Sφ = 0 is meta-conformal invariant [10]
(extended to Jeans-Poisson systems in [19]).
Now, quasi-primary scaling operators [4] are characterised by the param-
eters (xi, γi) (µ is simply a global dimensionful scale) and by co-variance
under the maximal finite-dimensional sub-algebra 〈X±1,0, Y±1,0〉 ∼=
sl(2,R)⊕ sl(2,R) for µ 6= 0. Explicitly

X−1 = −∂t , X0 = −t∂t − r∂r − x
X1 = −t2∂t − 2tr∂r − µr2∂r − 2xt− 2γr

Y−1 = −∂r , Y0 = −t∂r − µr∂r − γ
Y1 = −t2∂r − 2µtr∂r − µ2r2∂r − 2γt− 2γµr (8)

Here, the generatorsX−1, Y−1 describe time- and space-translations, Y0
is a (conformal) Galilei transformation, X0 gives the dynamical scaling
t 7→ λt of r 7→ λr (with λ ∈ R) such that the so-called ‘dynamical expo-
nent’ z = 1 since both time and space are re-scaled in the same way and
finallyX+1, Y+1 give ‘special’ meta-conformal transformations.
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Using the generators (8) (in their two-body formsX [2]
n , Y

[2]
n ) we construct

the meta-conformal Ward identities X [2]
n 〈φ1φ2〉 = Y

[2]
n 〈φ1φ2〉 = 0. One

obtains the co-variant two-point function, up to normalisation [10,12]

〈φ1(t1, r1)φ2(t2, r2)〉 = δx1,x2
δγ1,γ2 (t1 − t2)−2x1

(
1 + µ

r1 − r2
t1 − t2

)−2γ1/µ
(9)

clearly distinct from the result (1) of ortho-conformal invariance. How-
ever, the result (9) raises immediately the following questions:

1. is 〈φ1φ2〉 a correlator or rather a response, since neither of the sym-
metry or causality conditions are obeyed ?

2. even if xi > 0 and γi/µ > 0, why does 〈φ1φ2〉 not always decay to
zero for large separations |t1 − t2| → ∞ or |r1 − r2| → ∞ ?

3. why is there a singularity at µ(r1 − r2) = −(t1 − t2) ?

3 Two-point function in dual space

Our construction follows the same steps as outlined above which have
already been used to recast the co-variant two-point functions of
Schrödinger- and conformal Galilean invariance into a physically reason-
able form, see [11,13,14].

First, we consider the ‘rapidity’ γ as a new variable and dualise it through
a Fourier transformation, which gives the quasi-primary scaling operator

φ̂(ζ, t, r) =
1√
2π

∫
R

dγ eiγζ φγ(t, r) (10)

The representation (4) of the meta-conformal algebra becomes

Xn =
i(n+ 1)

µ
[(t+ µr)

n − tn] ∂ζ

−tn+1∂t −
1

µ

[
(t+ µr)

n+1 − tn+1
]
∂r − (n+ 1)xtn

Yn = i(n+ 1) (t+ µr)
n
∂ζ − (t+ µr)

n+1
∂r (11)

Second, we seek an extension of the Cartan sub-algebra h by looking for a
new generator N such that [Xn, N ] = αnXn and [Ym, N ] = βmYm where
αn, βm are constants to be determined. It turned out [20] that N must
have the form

N := −r∂r − (ζ + c) ∂ζ + µ∂µ − ν (12)
[Xn, N ] = 0 , [Yn, N ] = −Yn n ∈ Z. (13)
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and satisfy (13). N is a dynamical symmetry of (6), since [S, N ] = −S.
This achieves the construction of the extended meta-conformal algebra
m̃conf(2) := mconf(2)⊕ CN , with commutators (5,13).

Third, co-variant two-point functions of quasi-primary scaling opera-
tors are found from the Ward identities X [2]

n 〈φ1φ2〉 = Y
[2]
n 〈φ1φ2〉 =

N [2] 〈φ1φ2〉 = 0, with Xn, Yn, N ∈ m̃conf(2) and n = ±1, 0 [12]. Given
the form of N , we also consider µ to a be further variable and set

〈φ̂(ζ1, t1, r1;µ1)φ̂(ζ2, t2, r2;µ2)〉 = F̂ (ζ1, ζ2, t1, t2, r1, r2;µ1, µ2) (14)

Clearly, co-variance under X−1 and Y−1 implements time- and space-
translation-invariance, such that F̂ = F̂ (ζ1, ζ2, t, r;µ1, µ2), with t = t1 −
t2 and r = r1 − r2. Next, co-variance under other generators of m̃conf(2)
provides the system

X0 : (t∂t + r∂r + x1 + x2) F̂ = 0 (15)
Y0 : (t∂r + µ1r∂r − i(∂ζ1 + ∂ζ2) + (µ1 − µ2)r2∂r) F̂ = 0 (16)

X1 : (ir(∂ζ1 − ∂ζ2)− t(x1 − x2)) F̂ (ζ1, ζ2, t, r;µ) = 0 (17)

Y1 : (t+ µr) (∂ζ1 − ∂ζ2) F̂ (ζ1, ζ2, t, r;µ) = 0 (18)

N :
(
r∂r + (ζ+ + c)∂ζ+ − µ∂µ + ν1 + ν2

)
F̂ (ζ+, t, r;µ) = 0. (19)

Since F̂ must not any longer depend explicitly on r2, (16) shows thatµ1 =
µ2 =: µ. Similarly, eq. (18) states that (∂ζ1 − ∂ζ2)F̂ = 0 such that F̂ =

F̂ (ζ+, t, r;µ), with ζ± := 1
2 (ζ1 ± ζ2). Then eq. (17) produces x1 = x2.

The three conditions (15,16,19) (we shall absorb from now on c into a
translation of ζ+) fix the function F̂ (ζ+, t, r, ;µ) which depends on three
variables and the constant µ, and also on the pairs of constants (x1, ν1)
and (x2, ν2) which characterise the two quasi-primary scaling operators
φ̂1,2. Solving eq. (15), it follows that F̂ (ζ+, t, r;µ) = t−2xf̂(u, ζ+, µ) with
u = r/t and x = x1 = x2. Changing variables according to v = ζ+ + iu

and f̂(u, ζ+, µ) = ĝ(u, v, µ), eqs. (16,19) leads to ĝ(u, v, µ) = Ĝ(w, µ) and
finally4

Ĝ(w, µ) = Ĝ0(µ)w−ν1−ν2 = Ĝ1(µ)

(
ζ+ + i

ln(1 + µu)

µ

)−ν1−ν2
. (20)

Since µ is merely a parameter, Ĝ1(µ) is just a normalisation constant.

Proposition.The dual two-point function, covariant under the generators
X±1,0, Y±1,0, N of the dual representation (11,12) of the meta-conformal al-

4for more details see [20]
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gebra m̃conf(2), is up to normalisation

F̂ (ζ1, ζ2, t, r) = 〈φ̂1(t, r, ζ1)φ̂2(0, 0, ζ2)〉

= δx1,x2
|t|−2x1

(
ζ1 + ζ2

2
+ i

ln(1 + µr/t)

µ

)−ν1−ν2
. (21)

4 Inverse dual transformation

Forth, to un-dualise, we write F̂ = δx1,x2 |t|−2x1 f̂λ(ζ+) such that

fλ(ζ+) := f̂(ζ+ + iλ) = (ζ+ + iλ)
−ν1−ν2 , λ :=

ln(1 + µr/t)

µ
. (22)

A well-known mathematical result on Fourier analysis on Hardy spaces
states there exist the following integral representation (F̂±(γ+) are
square-integrable functions) [1,14,20]

√
2π f̂(ζ+ + iλ) = Θ(λ)

∫ ∞
0

dγ+ e
+i(ζ++iλ)γ+F̂+(γ+)

+Θ(−λ)

∫ ∞
0

dγ+ e
−i(ζ++iλ)γ+F̂−(γ+). (23)

The inverse Fourier transformation is found by distinguishing the cases
λ > 0 and λ < 0. In the case λ > 0, we have from (23)

F =
|t|−2x

π
√

2π
Ĝ1(µ)

∫
R2

dζ+dζ− e−i(γ1+γ2)ζ+ e−i(γ1−γ2)ζ− ×

×
∫
R

dγ+ Θ(γ+)F̂+(γ+)e−γ+λeiγ+ζ+

=
|t|−2x

π
√

2π
Ĝ1(µ)

∫
R

dγ+ Θ(γ+)F̂(γ+)e−γ+λ ×

×
∫
R

dζ− e
−(γ1−γ2)ζ−

∫
R
dζ+ ei(γ+−γ1−γ2)ζ+

= δx1,x2
δ(γ1 − γ2)Θ(γ1)|t|−2x1f1(µ)f2(γ1) exp (−2γ1 ln(1 + µr/t)/µ)

= δx1,x2δ(γ1 − γ2)Θ(γ1)f1(µ)f2(γ1)|t|−2x1(1 + µr/t)−2γ1/µ. (24)

where in the third line two delta functions where recognised, and f1, f2
contain unspecified dependencies on µ and γ1, respectively.5 In the case
λ < 0, we have in quite an analogous way

F = δx1,x2δ(γ1 − γ2)Θ(−γ1)|t|−2x1f1(µ)f2(−γ1) exp (−2γ1 ln(1 + µr/t)/µ)

= δx1,x2
δ(γ1 − γ2)Θ(−γ1)f1(µ)f2(−γ1)|t|−2x1(1 + µr/t)−2γ1/µ. (25)

5An eventual shift ζ+ 7→ ζ+ + c, see (19), can be absorbed into the re-definition
F̂(γ+) e−γ+c 7→ F̂(γ+).
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The meaning of the signs of λ, is carefully explained in [20]. Under con-
vention that µ > 0 we have always γ1r/t = |γ1r/t| > 0, independently of
the sign ofλ. Therefore, we can alwayswrite for the time-space argument

µ
r

t
=

µ

γ1

γ1r

t
=

µ

γ1

∣∣∣γ1r
t

∣∣∣ (26)

(if γ1 6= 0) and we have identified the source of the non-analyticity in the
two-point function. Eqs. (24,25,26) combine to give our main result.

Theorem 1. With the convention that µ = µ1 = µ2 > 0, and if ν1 +
ν2 >

1
2 , the two-point correlator, co-variant under the representation (8),

enhanced by (12), of the extended meta-conformal algebra c̃onf(2), reads up
to normalisation

C12(t, r) = 〈φ1(t, r)φ2(0, 0)〉 = δx1,x2
δγ1,γ2 |t|−2x1

(
1 +

µ

γ1

∣∣∣γ1r
t

∣∣∣)−2γ1/µ .
(27)

This form has the correct symmetry C12(t, r) = C21(−t,−r) under per-
mutation of the scaling operators of a correlator. For γ1 > 0 and x1 > 0,
the correlator decays to zero for t→ ±∞ or r → ±∞.
In the limit µ → 0, the extended meta-conformal algebra (5,13) con-
tracts to the extended altern-Virasoro algebra ãltv(1), whose maximal
finite-dimensional sub-algebra is the extended conformal Galilean alge-
bra c̃ga(1) = cga(1)⊕ CN . We recover as a special limit case:
Theorem 2. [14] If ν1 + ν2 >

1
2 , the two-point correlator, co-variant under

the extended conformal Galilean algebra c̃ga(1), reads (up to normalisation)

C12(t, r) = 〈φ1(t, r)φ2(0, 0)〉 = δx1,x2
δγ1,γ2 |t|−2x1 exp

(
−
∣∣∣∣2γ1rt

∣∣∣∣) . (28)
Any treatment of the cga which neglects this non-analyticity cannot be
correct.

5 Conclusion

Summarising, we have shown that for time-space meta-conformal in-
variance, as well as for its µ → 0 limit conformal galilean invariance
(or BMS-invariance), the co-variant two-point correlators are given by
eqs. (27,28) and are explicitly non-analytic in the temporal-spatial vari-
ables. Any form of the Ward identities which implicitly assumes such
an analyticity cannot be correct. In our construction of physically sen-
sible Ward identities, we extended the Cartan sub-algebra to a higher
rank. The extra generator N provides an important ingredient in the
demonstration that in direct space, the meta-conformally and galilean-
conformallly covariant two-point correlators rather are distributions.
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