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Abstract. We study in some detail the properties of the mathematically
correct formulation of the classical Einstein-Rosen “bridge” as proposed
in the original 1935 paper, which was shown in a series of previous pa-
pers of ours to represent the simplest example of a static spherically
symmetric traversable lightlike thin-shell wormhole. Thus, the original
Einstein-Rosen “bridge” is not equivalent to the concept of the dynami-
cal and non-traversable Schwarzschild wormhole, also called “Einstein-
Rosen bridge” in modern textbooks on general relativity. The original
Einstein-Rosen “bridge” requires the presence of a special kind of “ex-
otic” matter source located on its throat which was shown to be the sim-
plest member of the previously introduced by us class of lightlike mem-
branes. We introduce and exploit the Kruskal-Penrose description of the
original Einstein-Rosen “bridge”. In particular, we explicitly construct
closed timelike geodesics on the pertinent Kruskal-Penrose manifold.

PACS codes: 98.80.Jk, 04.70.Bw, 11.25.-w

1 Introduction

The celebrated Einstein-Rosen “bridge” in its original formulation from
1935 [1] is historically the first example of a traversable gravitational
wormhole spacetime. However, the traditional presentation of the
Einstein-Rosen “bridge” in modern textbooks in general relativity (e.g.
[2]) does not correspond to its original formulation [1]. The “textbook”
version of the Einstein-Rosen “bridge” is physically inequivalent to the
original 1935 construction as it represents both a non-static spacetime
geometry as well as it is non-traversable.

Based on earlier works of ours [3] we revisit the original Einstein-Rosen
formulation from 1935 [1]. We find that the originally used by Einstein
and Rosen local spacetime coordinates suffer from a serious problem –

1



E. Guendelman, E. Nissimov, S. Pacheva, M. Stoilov

the pertinent spacetime metric in these coordinates possesses an essen-
tial unphysical singularity at the wormhole “throat” – the boundary be-
tween the two “universes” of the Einstein-Rosen “bridge” manifold.

We proposed instead a different set of local coordinates for the Einstein-
Rosen “bridge” such that its spacetime geometry becomes well-defined
everywhere, including on the wormhole "throat".

On the other hand, this reveals a very important new feature of the cor-
rectly defined Einstein-Rosen “bridge” [3], which was overlooked in the
original Einstein-Rosen paper [1]. Namely, we show that the correct con-
struction of the Einstein-Rosen “bridge” as self-consistent solution of
the corresponding Einstein equations requires the presence of a “thin-
shell” “exotic” matter source on the wormhole “throat” – a special par-
ticular member of the originally introduced in other papers of ours [3,4]
class of lightlike membranes 1.

In the present notewefirst briefly review the basics of our construction of
the original Einstein-Rosen “bridge” as a specificwell-defined solution of
wormhole type of gravity interacting self-consistently with a dynamical
lightlike membrane matter based on explicit Lagrangian action princi-
ple for the latter [3, 4]. Also we present the maximal analytic Kruskal-
Penrose extension of the original Einstein-Rosen “bridge” wormhole
manifold significantly different from the Kruskal-Penrose manifold of
the corresponding Schwarzschild black hole [2].

Next, we discuss in some detail the dynamics of test particles (mass-
less and massive ones) in the gravitational background of Einstein-
Rosen “bridge” wormhole. Apart from exhibiting the traversability of the
Einstein-Rosen wormhole w.r.t. proper-time of travelling observers, we
explicitly construct a closed timelike geodesics.

2 Deficiency of the Original 1935 Formulation of Einstein-Rosen Bridge

The Schwarzschild spacetime metric – the simplest static spherically
symmetric black hole metric – is given in standard coordinates (t, r, θ, ϕ)
as (e.g. [2]):

ds2 = −A(r)dt2 +
1

A(r)
dr2 + r2

(
dθ2 + sin2 θdϕ2

)
, A(r) = 1− r0

r
.

(1)
r0 ≡ 2m (m – black hole mass parameter) is the horizon radius, where
A(r0) = 0 (r = r0 is a non-physical coordinate singularity of the metric
(1), unlike the physical spacetime singularity at r = 0). Here r > r0

defines the exterior Schwarzschild spacetime region, whereas the region
r < r0 is the black hole interior.

1For a detailed discussion of timelike thin-shell wormholes, see the book [5].
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In spacetime geometries of static spherically symmetric type (like (1)
with generic A(r)) special role is being played by the so called “tortoise”
coordinate r∗ defined as:

dr∗

dr
=

1

A(r)
−→ r∗ = r + r0 log

(
|r − r0|/r0

)
, (2)

such that for radially moving light rays we have t ± r∗ = const (curved
spacetime generalization of Minkowski’s t± r = const).

In constructing the maximal analytic extension of the Schwarzschild
spacetime geometry – the Kruskal-Szekeres coordinate chart – essen-
tial intermediate use is made of “tortoise” coordinate r∗ (2), where the
Kruskal-Szekeres (“light-cone”) coordinates (v, w) are defined as follows
(e.g. [2]):

v = ± 1√
2kh

ekh
(
t+r∗

)
, w = ∓ 1√

2kh
e−kh

(
t−r∗

)
(3)

with all four combinations of the overall signs. Here kh = 1
2∂rA(r)

∣∣
r=r0

=
1

2r0
denotes the so called “surface gravity”, which is related to the Hawk-

ing temperature as kh2π = kBThawking. Equivalently, Eqs.(3) can be writtes
as::

∓vw =
1

kh
e2khr

∗
, ∓ v

w
= e2kht , (4)

wherefrom t and r∗, as well as r, are determined as functions of vw.

The various combination of the overall signs in Eqs.(3) define a doubling
of the two regions of the standard Schwarzschild geometry [2]:

(i) (+,−) – exterior Schwarzschild region r > r0 (region I);

(ii) (+,+) – black hole r < r0 (region II);

(iii) (−,+) – second copy of exterior Schwarzschild region r > r0 (region
III);

(iv) (−,−) – “white” hole region r < r0 (region IV ).

In the classic paper [1] Einstein and Rosen introduced in (1) a new radial-
like coordinate u via r = r0 + u2:

ds2 = − u2

u2 + r0
dt2 + 4(u2 + r0)du2 + (u2 + r0)2

(
dθ2 + sin2 θ dϕ2

)
, (5)

and let u ∈ (−∞,+∞). Therefore, (5) describes two identical copies of
the exterior Schwarzschild spacetime region (r > r0) for u > 0 and u < 0,
respectively, which are formally glued together at the horizon u = 0.

However, there is a very serious problem with (5) (apart from the coordi-
nate singularity at u = 0, where det ‖gµν‖u=0 = 0). The Einstein-Rosen
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metric (5) does not satisfy the vacuum Einstein equations at u = 0. The
latter acquire an ill-defined non-vanishing “matter” stress-energy tensor
term on the r.h.s., which was overlooked in the original 1935 paper [1]!

Indeed, as explained in [3], using Levi-Civita identity R0
0 =

− 1√
−g00
∇2

(3) (
√
−g00) (where∇2

(3) is the 3-dimensional spatial Laplacian)
we deduce that (5) solves vacuum Einstein equation R0

0 = 0 for all
u 6= 0. However, since

√
−g00 ∼ |u| as u → 0 and since ∂2

∂u2 |u| = 2δ(u),
Levi-Civita identity tells us that:

R0
0 ∼

1

|u|
δ(u) ∼ δ(u2) , (6)

and similarly for the scalar curvature R ∼ 1
|u|δ(u) ∼ δ(u2).

3 Original Einstein-Rosen Bridge is a Lightlike Thin-Shell Wormhole

In Refs. [3] we proposed a correct reformulation of the original Einstein-
Rosen bridge as a mathematically consistent traversable lightlike thin-
shell wormhole. This is achieved via introducing a different radial-like
coordinate η ∈ (−∞,+∞), by substituting r = r0 + |η| in (1):

ds2 = − |η|
|η|+ r0

dt2 +
|η|+ r0

|η|
dη2 + (|η|+ r0)2

(
dθ2 + sin2 θ dϕ2

)
. (7)

Obviously, Eq.(7) again describes two “universes” – two identical copies
of the exterior Schwarzschild spacetime region for η > 0 and η < 0, re-
spectively. However, unlike the ill-behaved original 1935 metric (5), now
both “universes” are correctly glued together at their common horizon
η = 0.

Namely, the metric (7) solves Einstein equations:

Rµν −
1

2
gµνR = 8πT (brane)

µν , (8)

where on the r.h.s. T (brane)
µν = Sµνδ(η) is the energy-momentum tensor

of a special kind of a lightlike membrane located on the common horizon
η = 0 – the wormhole “throat”. As shown in [3], the lightlike analogues
of W.Israel’s junction conditions on the wormhole “throat” are satisfied.
The resulting lightlike thin-shell wormhole is traversable (see Sections
4,6 below).

The energy-momentum tensor of lightlike membranes T (brane)
µν is self-

consistently derived as T (brane)
µν = − 2√

−g
δSLL

δgµν from the following mani-
festly reparametrization invariant world-volume Polyakov-type lightlike
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membrane action (written for arbitraryD = (p+1)+1 embedding space-
time dimension and (p+ 1)-dimensional brane world-volume):

SLL = −1

2

∫
dp+1σ Tb

p−1
2

0

√
−γ
[
γabḡab − b0(p− 1)

]
, (9)

ḡab ≡ gab −
1

T 2
∂au∂bu , gab ≡ ∂aXµgµν(X)∂bX

ν . (10)

Here the following notations are used:

(a) γab is the intrinsic Riemannian metric on the world-volume with
γ = det ‖γab‖; b0 is a positive constantmeasuring theworld-volume “cos-
mological constant”. gab (10) is the induced metric on the world-volume
which becomes singular on-shell – manifestation of the lightlike nature
of the p-brane.

(b) (σ) ≡ (σa) with a = 0, 1, . . . , p ; ∂a ≡ ∂
∂σa .

(c) Xµ(σ) are the p-brane embedding coordinates in the bulk
D-dimensional spacetime with Riemannian metric gµν(x) (µ, ν =
0, 1, . . . , D − 1).

(d) u is auxiliary world-volume scalar field defining the lightlike direc-
tion of the induced metric gab (10) and it is a non-propagating degree of
freedom.

(e) T is dynamical (variable) membrane tension (also a non-
propagating degree of freedom).

The Einstein Eqs.(8) imply the following relation between the lightlike
membrane parameters and the Einstein-Rosen bridge “mass” (r0 = 2m):

−T =
1

8πm
, b0 =

1

4
, (11)

i.e., the lightlike membrane dynamical tension T becomes negative on-
shell – manifestation of the “exotic matter” nature of the lightlike mem-
brane.

4 Test Particle Dynamics and Traversability in the Original Einstein-Rosen
Bridge

As already noted in [3] traversability of the original Einstein-Rosen
bridge is a particularmanifestation of the traversability of lightlike “thin-
shell” wormholes 2. Here for completeness we will present the explicit
details of the traversability within the proper Einstein-Rosen bridge

2Subsequently, traversability of the Einstein-Rosen bridge has been studied using
Kruskal-Szekeres coordinates for the Schwarzschild black hole [6], or the 1935 Einstein-
Rosen coordinate chart (5) [7].
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wormhole coordinate chart (7) which are needed for the construction of
the pertinent Kruskal-Penrose diagram in Section 4.

The motion of test-particle (“observer”) of mass m0 in a gravitational
background is given by the reparametrization-invariant world-line ac-
tion:

Sparticle =
1

2

∫
dλ

[
1

e
gµν

.
x
µ .
x
ν −em2

0

]
, (12)

where
.
x
µ≡ dxµ

dλ , e is the world-line “einbein” and in the present case
(xµ) = (t, η, θ, ϕ).

For a static spherically symmetric background such as (7) there are con-
servedNoether “charges” – energyE and angularmomentumJ . In what
follows we will consider purely “radial” motion (J = 0) so, upon taking
into account the “mass-shell” constraint (the equation of motion w.r.t.
e) and introducing the world-line proper-time parameter τ ( dτdλ = em0),
the timelike geodesic equations (world-lines of massive point particles)
read:(dη

dτ

)2

=
E2

m2
0

−A(η) ,
dt

dτ
=

E

m0A(η)
, A(η) ≡ |η|

|η|+ r0
. (13)

whereA(η) is the “−g00” component of the proper Einstein-Rosen bridge
metric (7).

The first radial η-equation (13) exactly resembles classical energy-
conservation equation for a “non-relativistic” particle with mass 1

2 mov-
ing in an effective potentialVeff(η) ≡ 1

2A(η) graphically depicted on Fig.1
below:

dη

dτ
= ε

√
E2

m2
0

−A(η) , ε = ±1 , (14)

depending whether η(τ) moves towards larger values (ε = +1) or lower
values (ε = −1).

For a test-particle starting for τ = 0 at initial position η0 = η(0) , t0 = t(0)
the solutions of Eqs.(13) read:

ε
E

2khm0

∫ 2khη(τ)

2khη0

dy

√
(1 + |y|)

[
(1 +

(
1− m2

0

E2

)
|y|
]−1

= τ , (15)

ε
1

2kh

∫ 2khη(τ)

2khη0

dy
1

|y|

√
(1 + |y|)3

[
(1 +

(
1− m2

0

E2

)
|y|
]−1

= t(τ)− t0 . (16)

In particular, Eq.(15) shows that the particle will cross the wormhole
“throat” (η = 0) within a finite proper-time τ0 > 0:

τ0 = ε
E

2khm0

∫ 0

2khη0

dy

√
(1 + |y|)

[
(1 +

(
1− m2

0

E2

)
|y|
]−1

(17)
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Figure 1: Graphical representation of A(η) (13) with “reflection” points
±ηstop (18) indicated.

(here ε = −1 for η0 > 0 and ε = +1 for η0 < 0).

Concerning the “laboratory” time t, it follows from (16) that t(τ0 − 0) =
+∞, i.e., from the point of view of a static observer in “our” (right) uni-
verse it will take infinite “laboratory” time for the particle to reach the
“throat” – the latter appears to the static observer as a future black hole
horizon.

Eq.(16) also implies t(τ0 + 0) = −∞, which means that from the point of
view of a static observer in the second (left) universe, upon crossing the
“throat”, the particle starts its motion in the second (left) universe from
infinite past, so that it will take an infinite amount of “laboratory” time
to reach a point η1 < 0 – i.e. the “throat” now appears as a past black
hole horizon.

For small energies E < m0 according to (15) the particle is trapped in an
effective potential well and shuttles within finite proper-time intervals
between the “reflection” points (see Fig.1):

±ηstop =
(

2kH [m2
0/E

2 − 1]
)−1

. (18)

In Section 6 we will show that for a special value of m0/E the pertinent
particle geodesics is a closed timelike curve on the extended Kruskal-
Penrose manifold.

In analogy with the usual “tortoise” coordinate r∗ for the Schwarzschild
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black hole geometry (2) we now introduce Einstein-Rosen bridge “tor-
toise” coordinate η∗ (recall r0 = 1

2kh
):

dη∗

dη
=
|η|+ r0

|η|
−→ η∗ = η + sign(η)r0 log

(
|η|/r0

)
. (19)

Let us note here an important difference in the behavior of the “tortoise”
coordinates r∗ (2) and η∗ (19) in the vicinity of the horizon. Namely:

r∗ → −∞ for r → r0 ± 0 , (20)

i.e., when r approaches the horizon either from above or from below,
whereas when η approaches the horizon from above or from below:

η∗ → ∓∞ for η → ±0 . (21)

For infalling/outgoingmassless particles (light rays) Eqs.(15)-(19) imply:

t± η∗ = const . (22)

For infalling/outgoing massive particles we obtain accordingly:

[
t±η∗

]
(τ) =

1

2kh

∫ 2khη(τ)

2khη0

dx
(

1+
1

|x|

)[
ε

√
(1 + |x|)

[
(1 +

(
1− m2

0

E2

)
|x|
]−1

± 1

]
.

(23)

5 Kruskal-Penrose Manifold of the Original Einstein-Rosen Bridge

Following [8] we now introduce the maximal analytic extension of
original Einstein-Rosen wormhole geometry (7) through the following
Kruskal-like coordinates (v, w):

v = ± 1√
2kh

e±kh(t+η∗) , w = ∓ 1√
2kh

e∓kh(t−η∗) , (24)

implying:

−vw =
1

2kh
e±2khη

∗
, − v

w
= e±2kht . (25)

Here and below η∗ is given by (19).

The upper signs in (24)-(25) correspond to region I (v > 0, w < 0) de-
scribing “our” (right) universe η > 0, whereas the lower signs in (24)-(25)
correspond to region II (v < 0, w > 0) describing the second (left) uni-
verse η < 0 (see Fig.2 below).

Using the explicit expression (19) for η∗ in (25) we find two “throats”
(horizons) – at v = 0 or w = 0 corresponding to η = 0:
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(a) In region I the “throat” (v > 0, w = 0) is a future horizon (η =
0 , t → +∞), whereas the “throat” (v = 0, w < 0) is a past horizon (η =
0 , t→ −∞).

(b) In region II the “throat” (v = 0, w > 0) is a future horizon (η =
0 , t → +∞), whereas the “throat” (v < 0, w = 0) is a past horizon (η =
0 , t→ −∞).

As usual one replaces Kruskal-like coordinates (v, w) (24) with compact-
ified Penrose-like coordinates (v̄, w̄):

v̄ = arctan(
√

2kh v) = ± arctan
(
e±kh(t+η∗)

)
,

w̄ = arctan(
√

2kh w) = ∓ arctan
(
e∓kh(t−η∗)

)
, (26)

mapping the various “throats” (horizons) and infinities to finite
lines/points:

• In region I: future horizon (0 < v̄ < π
2 , w̄ = 0); past horizon (v̄ =

0,−π2 < w̄ < 0).

• In region II: future horizon (v̄ = 0, 0 < w̄ < π
2 ); past horizon

(−π2 < v̄ < 0, w̄ = 0).

• i0 – spacelike infinity (t = fixed, η → ±∞):
i0 = (π2 ,−

π
2 ) in region I; i0 = (−π2 ,

π
2 ) in region II.

• i± – future/past timelike infinity (t→ ±∞, η = fixed):
i+ = (π2 , 0), i− = (0,−π2 ) in region I; i+ = (0, π2 ), i− = (−π2 , 0) in
region II.

• J+ – future lightlike infinity (t→ +∞, η → ±∞, t∓ η∗ = fixed):
J+ = (v̄ = π

2 ,−
π
2 < w̄ < 0) in region I;

J+ = (−π2 < v̄ < 0, w̄ = π
2 ) in region II.

• J− – past lightlike infinity (t→ −∞, η → ±∞), t± η∗ = fixed):
J− = (0 < v̄ < π

2 , w̄ = −π2 ) in region I:
J− = (v̄ = −π2 , 0 < w̄ < π

2 ) in region II.

In Ref. [8], using the continuity of the light ray geodesics (22) when start-
ing in one of the regions I or II and crossing the horizon (“throat”) into
the other one, we have exhibited the following mutual identification of a
future horizon of one region with the past horizon of the second region
(see Fig.2):

• Future horizon in region I is identified with past horizon in region
II as:

(v̄, 0) ∼ (v̄ − π

2
, 0) . (27)
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Figure 2: Kruskal-Penrose Manifold of the Original Einstein-Rosen
Bridge

Infalling light rays cross from region I into region II via pathsP1 →
A ∼ B → P2 – all the way within finite world-line time intervals
(the symbol ∼ means identification according to (27)). Similarly,
infalling massive particles cross from region I into region II via
paths Q1 → E ∼ F → Q2 within finite proper-time interval.

• Future horizon in II is identified with past horizon in I:

(0, w̄) ∼ (0, w̄ − π

2
) . (28)

Infalling light rays cross from region II into region I via paths
R2 → C ∼ D → R1 where C ∼ D is identified according to (28).

6 Closed Timelike Geodesics

Let us consider again massive test-particle dynamics with small energies
E < m0, which according to (15)means that the particle is trappedwithin
an effective potential well (Fig.1).

Let the particle starts in “universe” I at η = 0 (past horizon) (at some
point A of the Kruskal-Penrose coordinate chart as indicated on Fig.3)
and then moves radially forward in η until it reaches the “reflection”
point ηstop (18) (indicated by Q1 on Fig.3) within the finite proper-time

10



Einstein-Rosen “Bridge” Revisited

interval according to (15):

∆τ =
E

2khm0

∫ 2khηstop

0

dx

√
(1 + |x|)

[
1 +

(
1− m2

0

E2

)
|x|
]−1

=
1

b
+
b+ 1

b3/2

(π
2
− arctan(

√
b)
)
, (29)

where a short hand notation b is introduced:

b ≡ m2
0

E2
− 1 > 0 . (30)

Then the particle proceeds by returning backward in η from ηstop (18)
towards η = 0 (future horizon of Kruskal-Penrose region I) within the
same proper-time interval (29) and it crosses the horizon at the point B
on Fig.3. Thus, the particle enters Kruskal-Penrose region II (η = 0 –
past horizon in II) at the point C on Fig.3 which is “dual” to point B on
the future horizon of I according to the future/past horizon identification
(27)-(28). Now the particle continues towards negative η until it reaches
within the same proper-time interval (29) the other “reflection point”
−ηstop (18) (indicated by Q2 on Fig.3). Finally, the particle returns from
−ηstop (18) towards η = 0 (the future horizon of II) and reaches it at the
point D on the Kruskal-Penrose chart (Fig.3) within the same proper-
time interval (29). Then it crosses into region I at the point F on the
past horizon of I, which is dually equivalent to D on the future horizon
of II according to the horizon identification (27)-(28). Afterwards the
particle continues again from F towards the first “reflection” point Q1

on Fig.3.

We want now to find the conditions for the coincidence of the points
F = A, i.e., to find conditions for the existence of a closed timelike
curve (CTC) meaning that the particle travels from some starting space-
time point in “universe” I, crosses into “universe” II, then crosses back
into “universe” I and returns to the same starting spacetime point for a
finite proper-time interval equal to 4∆τ (29).

To describe the above geodesic curve
(
v̄(τ), w̄(τ)

)
on theKruskal-Penrose

coordinate chart (recall Eqs.(26)) we need the explicit expressions for the
integrals (23) (regarded as functions of x ≡ 2khη):

2kh
(
t± η∗

)
(x) =

∫
dx
(

1 +
1

|x|

)[
ε

√
1 + |x|

1 +
(
1− m2

0

E2

)
|x|
± 1

]
= f

(ε)
± (x) + cε± , f

(−1)
± (x) = −f (1)

∓ (x) . (31)
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Figure 3: Geodesic test-particle trajectory A → Q1 → B ∼ C → Q2 →
D ∼ F . Eq.(33) is the condition for F = A, i.e., the geodesics is a CTC.

Here:

f
(1)
± (x) = ±x− 1

b

√
(1 + x)(1− bx) + log

[
2 + x− bx− 2

√
(1 + x)(1− bx)

]
+

1 + 3b

2b3/2
arctan

( 2bx+ b− 1

b(1 + x)(1− bx)

)
+

(
0

−2 log x

)
,(32)

where the short hand notation b (30) was used, and cε± are integration
constants determined from the matching conditions at the points of re-
turn (18) in regions I and II: x = ±2khηstop = ±1/b (using notation
(30)).

Using Eqs.(31)-(32) the condition for existence of CTC – coincidence on
the past horizon of region I of the starting point of the particle geodesics
A with the endpoint of the same geodesics F – yields the following con-
dition on the value of the parameter b (30):

1

b
− log(b+ 1) + log 4 +

1 + 3b

2b3/2

[π
2
− arctan

(b− 1√
b

)]
= 0 (33)

with a solution b ≈ 5.5876, i.e. m0 ≈ 2.5666E.

Eq.(33) implies for the intergration constants:

f
(1)
(−)(0)+c

(1)
(−) = 2kh

(
t−η∗

)
(0) = 0 , f

(−1)
(+) (0)+c

(−1)
(+) = 2kh

(
t+η∗

)
(0) = 0 ,

(34)
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where in the last equalities in (34) the definition (31) of f (±1)
(∓) (x) has been

taken into account.

Relations (34) show that, for the CTC exhibited above, the points A,C
and B,D are located exactly at the middle of the past/future horizons of
regions I and II:(

v̄A, w̄A
)

=
(
0,−π

4

)
,
(
v̄B , w̄B

)
=
(π

4
, 0
)
,(

v̄C , w̄C
)

=
(
−π

4
, 0
)

,
(
v̄A, w̄A

)
=
(
0,
π

4

)
. (35)

Existence of CTC’s (also called “time machines”) turns out to be quite
typical phenomenon in wormhole physics (not necessarily of thin-shell
wormholes) [9] (for a review, see [10]). This is due to the violation of
the null-energy conditions in general relativity because of the presence
of an “exotic matter” at the “throat”. In the present case of the origi-
nal Einstein-Rosen bridge as a specific example of a lightlike thin-shell
wormhole, the violation of the null-energy conditions is manifesting it-
self via the negativity of the dynamical lightlike membrane tension T
(11), i.e., the lightlike membrane residing on the wormhole throat is an
“exotic” lightlike thin-shell matter source.

7 Conclusions

We have discussed in some detail the basic properties of the mathe-
matically consistent formulation of the original “Einstein-Rosen bridge”
proposed in their classic 1935 paper. We have stressed a crucial fea-
ture (overlooked in the 1935 paper) of the correctly formulated original
Einstein-Rosen bridge – it is not a solution of the vacuum Einstein equa-
tions but rather it the simplest example of a static spherically symmetric
traversable lightlike “thin-shell” wormhole solution in general relativ-
ity. The consistency of the latter is guaranteed by the remarkable special
properties of the world-volume dynamics of the lightlike membrane lo-
cated at the wormhole “throat”, which serves as an “exotic” thin-shell
matter source of gravity.

• We have described the Kruskal-Penrose diagram representation of
the original Einstein-Rosen bridge.

• The Kruskal-Penrose manifold of the original Einstein-Rosen
bridge differs significantly from the well-known Kruskal-Penrose
extension of the standard Schwarzschild black hole. Namely,
Kruskal-Penrose coordinate chart of the original Einstein-Rosen
bridge has only two regions corresponding to “our” (right) and

13
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the second (left) “universes” (two identical copies of the exterior
Schwarzschild spacetime region) unlike the four regions in the
standard Kruskal-Penrose chart of the Schwarzschild black hole,
i.e., now there are no black/white hole regions.

• There is a special pairwise identification between the future and
past horizons of the neighbouring Kruskal-Penrose regions.

• We have explicitly exhibited traversability of the original Einstein-
Rosen bridge w.r.t. “proper-time” of test-particles (travelling ob-
servers). In particular, we have found for a special relation between
the energy and themass of the test-particle a solution for the perti-
nent geodesics which is a closed timelike curve. The latter is a typical
feature in wormhole physics with “exotic” matter sources.

Acknowledgements

We gratefully acknowledge support of our collaboration through the aca-
demic exchange agreement between the Ben-Gurion University and the
Bulgarian Academy of Sciences. S.P. and E.N. have received partial sup-
port from European COST actions MP-1210 and MP-1405, respectively.
E.G. received partial support from COST Action CA-15117. E.N., S.P. amd
M.S. gratefully acknowledge support from Bulgarian National Science
Fund Grant DFNI-T02/6.

References
[1] A. Einstein and N. Rosen (1935) Phys. Rev. 48 73.
[2] Ch. Misner, K. Thorne and J.A. Wheeler (1973) “Gravitation” (W.H. Freeman

and Co., San Francisco).
[3] E. Guendelman, A. Kaganovich, E. Nissimov, S. Pacheva (2009) Phys. Lett.

B681 457-462 (arxiv:0904.3198 );
E. Guendelman, A. Kaganovich, E. Nissimov, S. Pacheva (2010) Int. J. Mod.
Phys. A25 1405-1428 (arxiv:0904.0401).

[4] E. Guendelman, A. Kaganovich, E. Nissimov, S. Pacheva (2009) Phys. Lett.
B673 288-292 (arxiv:0811.2882);
E. Guendelman, A. Kaganovich, E. Nissimov and S. Pacheva (2010) Int. J.
Mod. Phys. A25 1571-1596 (arxiv:0908.4195);
E. Guendelman, A. Kaganovich, E. Nissimov and S. Pacheva (2011)Gen. Rel.
Grav. 43 1487-1513 (arxiv:1007.4893).

[5] M. Visser (1996) “Lorentzian Wormholes. From Einstein to Hawking”
(Springer, Berlin).

[6] N. Poplawski (2010) Phys. Lett. B687 110-113 (arxiv:0902.1994 ).
[7] M.O. Katanaev (2014)Mod. Phys. Lett. A29 1450090 (arXiv:1310.7390 ).

14



Einstein-Rosen “Bridge” Revisited

[8] E. Guendelman, E. Nissimov, S. Pacheva and M. Stoilov (2016) “Kruskal-
Penrose Formalism for Lightlike Thin-Shell Wormholes”. In Springer Pro-
ceedings in Mathematics and Statistics, vol. 191, ed. V. Dobrev (Springer)
(1512.08029 ).

[9] M. Morris, K. Thorne and U. Yurtsever (1988) Phys. Rev. Lett. 61 1446;
M. Visser (1990) Phys. Rev. D41 1116;
J. Friedman,M.Morris, I. Novikov, F. Echeverria, G. Klinkhammer, K. Thorne
and U. Yurtsever (1990) Phys. Rev. D42 1915;
M. Visser (2003). In The Future of Theoretical Physics and Cosmology - Cel-
ebrating Steven Hawking’s 60th Birthday, eds. G. Gibbons, E. Shellard and
S. Rankin (Cambridge Univ. Press).

[10] F. Lobo (2008) Classical and Quantum Gravity: Theory, Analysis and Applica-
tions, chap. 6 (Nova Sci. Publ.) (1008.1127).

15


