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Abstract. We describe a new type of gravity-matter models where gravity cou-
ples in a non-conventional way to two distinct scalar fields providing a unified
Lagrangian action principle description of: (a) the evolution of both “early” and
“late” Universe – by the “inflaton” scalar field; (b) dark energy and dark matter
as a unified manifestation of a single material entity - the “darkon” scalar field.
The essential non-standard feature of our models is employing the formalism
of non-Riemannian space-time volume forms – alternative generally covariant
integration measure densities (volume elements) defined interms of auxiliary
antisymmetric tensor gauge fields. Although being (almost)pure-gauge degrees
of freedom, the non-Riemannian space-time volume forms trigger a series of im-
portant features unavailable in ordinary gravity-matter models When including
in addition interactions with the electro-weak model bosonic sector we obtain a
gravity-assisted generation of electro-weak spontaneousgauge symmetry break-
ing in the post-inflationary “late” Universe, while the Higgs-like scalar remains
massless in the “early” Universe.

PACS codes: 04.50.Kd, 98.80.Jk, 95.36.+x, 95.35.+d, 11.30.Qc,

1 Introduction

Dark energy and dark matter, occupying around 70% and 25% of the matter
content of the Universe, respectively, continue to be the two most unexplained
“mysteries” in cosmology and astrophysics (for a background, see [1, 2]). In
most loose terms dark energy is responsible for the accelerated expansion of to-
day’s Universe, i.e., dark energy acts effectively as repulsion force among the
galaxies – a phenomenon completely counterintuitive w.r.t. the naive notion
about gravity as an attractive force. And vice versa, dark matter holds together
the matter objects inside the galaxies. The adjective “dark” is due to the fact that
both these fundamental matter components of the Universe interact only grav-
itationally, and they do not directly interact with ordinary (baryonic) matter, in
particular, they do not interact electromagnetically and thus they remain “dark”.
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There exist a multitude of proposals for an adequate description of dark energy’s
and dark matter’s dynamics within the framework of standardgeneral relativity
or its modern extensions [3–5]. Here we will briefly describeand further extend
the basic features of our approach to the above topic [6] (forsome earlier works,
see also [7]).

Using the method of non-Riemannian spacetime volume-forms(metric-
independent generally-covariant integration measure densities or volume ele-
ments) [8] we start by constructing from first principles (via Lagrangian action)
a new non-canonical cosmological model of gravity interacting with a single
scalar field (here called “darkon”), which explicitly yields a self-consistent uni-
fied description of dark energy as a dynamically generated cosmological con-
stant, and dark matter as a dust fluid flowing along spacetime geodesics, by uni-
fying them as an exact sum of two separate contributions to the pertinent scalar
field energy-momentum tensor. In other words, this unified description shows
that dark energy and dark matter may be viewed as two different manifestations
of one single matter source - the scalar “darkon” field [6].

Next, extending our formalism of non-Riemannian spacetimevolume-forms, we
couple the above non-canonical gravity-matter system to a second scalar field –
the “inflaton” – in such a way that the “inflaton” dynamics provides a unified
description of the evolution of both “early” and “late” Universe [9] – this is a
model of “quintessential inflation” [10]. Furthermore, we add interaction with
theSU(2)× U(1) scalar and gauge fields of the electro-weak bosonic sector.

We exhibit in some detail the interplay between the “inflaton” and the “darkon”
in the “early” (inflationary) and the “late” (dark energy dominated) epochs of
the Universe. Among the principal interesting features is the gravity-assisted
generation in the “late” Universe of Higgs-like spontaneous gauge symmetry
breaking effective potential for theSU(2) × U(1) scalar iso-doublet1. In the
“early” Universe the Higgs-like field remains massless.

2 Hidden Noether Symmetry and Unification of Dark Energy and
Dark Matter

First we will consider, following [6], a simple particular case of a non-
conventional gravity-scalar-field action – a member of the general class of the
“modified-measure” gravity-matter theories [8] (for simplicity we use units with
the Newton constantGN = 1/16π):

S =

∫
d4x

√−g R+

∫
d4x

(√−g +Φ(C)
)
L(u, Y ) . (1)

HereR denotes the standard Riemannian scalar curvature for the pertinent Rie-
mannian metricgµν . In the second term in (1) – the scalar field Lagrangian

1For a related approach, see [11] based on an old idea by Bekenstein [12].
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is coupledsymmetricallyto two mutually independent spacetime volume-forms
(integration measure densities or volume elements) – the standard Riemannian√−g =

√
− det ‖gµν‖ and to an alternative non-Riemannian one:

Φ(C) =
1

3!
εµνκλ∂µCνκλ , (2)

whereCµνλ is an auxiliary rank 3 antisymmetric tensor field.

L(u, Y ) is general-coordinate invariant Lagrangian of a single scalar fieldu(x):

L(u, Y ) = Y − V (u) , Y ≡ −1

2
gµν∂µu∂νu . (3)

As a result of the equations of motion w.r.t. “measure” gaugefield Cµνλ we
obtain the following crucial new property of the model (1) –dynamical con-
straintonL(u, Y ) alongside with the second-order differential equations ofmo-
tion w.r.t. u (which now contains the non-Riemannian volume elementΦ(C)
(2)):

∂µL(u, Y ) = 0 −→ L(u, Y ) = −2M0 = const , i.e. Y = V (u)−2M0 ,
(4)

whereM0 is arbitrary integration constant. The factor2 in front of M0 is for
later convenience in view of its interpretation as adynamically generated cos-
mological constant.

Indeed, taking into account (4) the energy-momentum tensorbecomes:

Tµν = −2gµνM0 +
(
1 +

Φ(C)√−g

)
∂µu ∂νu , ∇νTµν = 0 . (5)

A second crucial property of the model (1) is the existence ofa hidden strongly
nonlinear Noether symmetrydue to the presence of the non-Riemannian volume
elementΦ(C):

δǫu = ǫ
√
Y , δǫgµν = 0 , δǫCµ = −ǫ

1

2
√
Y
gµν∂νu

(
Φ(C) +

√
−g

)
,(6)

whereCµ ≡ 1
3!ε

µνκλCνκλ. Under (6) the action (1) transforms as:δǫS =∫
d4x∂µ

(
L(u, Y )δǫCµ

)
. Then, standard Noether procedure yields a conserved

current:

∇µJ
µ = 0 , Jµ ≡ −

(
1 +

Φ(C)√−g

)√
2Y gµν∂νu . (7)

Tµν (5) andJµ (7) can be cast into a relativistic hydrodynamical form (taking
into account (4)):

Tµν = −2M0gµν + ρ0uµuν , Jµ = ρ0u
µ , (8)

3



E. Guendelman, E. Nissimov and S. Pacheva

where:

ρ0 ≡
(
1 +

Φ(C)√−g

)
2Y , uµ ≡ − ∂µu√

2Y
, uµuµ = −1 . (9)

For the pressurep and energy densityρ we have accordingly (withρ0 as in (9)):

p = −2M0 = const , ρ = ρ0 − p = 2M0 +
(
1 +

Φ(C)√−g

)
2Y , (10)

Because of the constant pressure (p = −2M0) ∇νTµν = 0 impliesbothhidden
Noether symmetry currentJµ = ρ0u

µ conservation, as well asgeodesic fluid
motion:

∇µ

(
ρ0u

µ
)
= 0 , uν∇νuµ = 0 . (11)

Therefore,Tµν = −2M0gµν + ρ0uµuν represents an exact sum of two contri-
butions of the two dark species:

p = pDE + pDM , ρ = ρDE + ρDM (12)

pDE = −2M0 , ρDE = 2M0 ; pDM = 0 , ρDM = ρ0 , (13)

i.e., the dark matter component is a dust fluid flowing along geodesics. This is
explicit unification of dark energy and dark matter originating from the dynamics
of a single scalar field - the “darkon”u.

3 Quintessential Inflation via Two Non-Riemannian Volume-F orms

Let us now consider, following [9], a modified-measure gravity-matter the-
ory constructed in terms of two different non-Riemannian volume-forms (using
again units whereGNewton = 1/16π):

S =

∫
d4xΦ(A)

[
R+L1(ϕ,X)

]
+

∫
d4xΦ(B)

[
L2(ϕ,X)+

Φ(H)√−g

]
. (14)

Here the following notations are used:

• Φ(A) andΦ(B) are two independent non-Riemannian volume-forms:

Φ(A) =
1

3!
εµνκλ∂µAνκλ , Φ(B) =

1

3!
εµνκλ∂µBνκλ , (15)

• Φ(H) = 1
3!ε

µνκλ∂µHνκλ is the dual field-strength of an additional auxil-
iary tensor gauge fieldHνκλ crucial for the consistency of (14).

• We are using Palatini formalism:R = gµνRµν(Γ), wheregµν and the
affine connectionΓλ

µν areapriori independent.
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• L1,2(ϕ,X) denote two different Lagrangians of a single scalar matter field
ϕ - the “inflaton”, of the form:

L1(ϕ,X) = X − V1(ϕ) , X ≡ −1

2
gµν∂µϕ∂νϕ , V1(ϕ) = f1 exp{−αϕ} ,

L2(ϕ,X) = be−αϕX + U(ϕ) , U(ϕ) = f2 exp{−2αϕ} , (16)

whereα, f1, f2 are dimensionful positive parameters, whereasb is a di-
mensionless one.

• The form of the action (14) is fixed by the requirement of invariance under
global Weyl-scale transformations:

gµν → λgµν , Γµ
νλ → Γµ

νλ , ϕ → ϕ+
1

α
lnλ ,

Aµνκ → λAµνκ , Bµνκ → λ2Bµνκ , Hµνκ → Hµνκ . (17)

Equations of motion w.r.t. affine connectionΓµ
νλ yield a solution for the latter as

a Levi-Civita connection:

Γµ
νλ = Γµ

νλ(ḡ) =
1

2
ḡµκ (∂ν ḡλκ + ∂λḡνκ − ∂κḡνλ) , (18)

w.r.t. to the Weyl-rescaled metric̄gµν :

ḡµν = χ1gµν , χ1 ≡ Φ1(A)√−g
. (19)

The metricḡµν plays an important role as the “Einstein frame” metric (see (22)
below).

Variation of the action (14) w.r.t. auxiliary tensor gauge fieldsAµνλ, Bµνλ and
Hµνλ yields the equations:

∂µ

[
R+ L(1)

]
= 0 , ∂µ

[
L(2) +

Φ(H)√−g

]
= 0 , ∂µ

(Φ2(B)√−g

)
= 0 , (20)

whose solutions read:

Φ2(B)√−g
≡ χ2 = const , R+ L(1) = M1 = const ,

L(2) +
Φ(H)√−g

= −M2 = const . (21)

HereM1 andM2 are arbitrary dimensionful andχ2 arbitrary dimensionless in-
tegration constants.

The first integration constantχ2 in (21) preserves global Weyl-scale invari-
ance (17) whereas the appearance of the second and third integration constants
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M1, M2 signifiesdynamical spontaneous breakdownof global Weyl-scale in-
variance under (17) due to the scale non-invariant solutions (second and third
ones) in (21).

It is very instructive to elucidate the physical meaning of the three arbitrary
integration constantsM1, M2, χ2 from the point of view of the canonical
Hamiltonian formalism (for details, we refer to [11]):M1, M2, χ2 are iden-
tified as conserved Dirac-constrained canonical momenta conjugated to (certain
components of) the auxiliary maximal rank antisymmetric tensor gauge fields
Aµνλ, Bµνλ, Hµνλ entering the original non-Riemannian volume-form action
(14).

Performing transition from the original metricgµν to ḡµν we arrive at the
“Einstein-frame”, where the gravity equations of motion are written in the stan-
dard form of Einstein’s equations:

Rµν(ḡ)−
1

2
ḡµνR(ḡ) =

1

2
T eff
µν (22)

with an appropriateeffectiveenergy-momentum tensor given in terms of an
Einstein-frame scalar LagrangianLeff . The latter turns out to be of the non-
canonical “k-essence” (kinetic quintessence) type [13] (containing higher pow-
ers of the scalar kinetic term̄X :

Leff = A(ϕ)X̄ +B(ϕ)X̄2 − Ueff(ϕ) , X̄ ≡ −1

2
ḡµν∂µϕ∂νϕ , (23)

where (recallV1 = f1e
−αϕ andU = f2e

−2αϕ):

A(ϕ) ≡ 1 +
1

2
be−αϕV1(ϕ) +M1

U(ϕ) +M2
, B(ϕ) ≡ − χ2b

2e−2αϕ

4
(
U(ϕ) +M2

) , (24)

Ueff(ϕ) ≡
(V1(ϕ) +M1)

2

4χ2

(
U(ϕ) +M2

) . (25)

As a most remarkable feature, the effective scalar potential Ueff(ϕ) (25) pos-
sesses twoinfinitely large flat regions:

• (-) flat region– for large negative values ofϕ, describing the “early” (in-
flationary) Universe:

Ueff(ϕ) ≃ U(−) ≡
f2
1

4χ2 f2
, (26)

• (+) flat region– for large positive values ofϕ, describing the “late” (nowa-
days) Universe:

Ueff(ϕ) ≃ U(+) ≡
M2

1

4χ2 M2
, (27)
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Figure 1. Qualitative shape of the effective scalar potential Ueff (25) as function ofϕ.

From the expression forUeff(ϕ) (25) and Fig.1 we deduce that we have anex-
plicit realization of quintessential inflation scenario[10] – continuously con-
necting an inflationary phase in the “early” Universe to a slowly accelerating ex-
pansion of “present-day” Universe [14] through the evolution of a single scalar
field.

The flat regions (26) and (27) correspond indeed to the evolution of the“early”
and the“late” Universe, respectively, provided we choose the ratio of thecou-
pling constants in the original scalar potentials versus the ratio of the scale-
symmetry breaking integration constants to obey:

f2
1

f2
≫ M2

1

M2
, (28)

which makes thevacuum energy density of the early UniverseU(−) much bigger
than that of the late UniverseU(+) (cf. (26), (27)).

If we choose the scalesM1 ∼ M4
EW andM2 ∼ M4

Pl, whereMEW , MPl are
the electroweak and Plank scales, respectively, we are thennaturally led to a
very small vacuum energy density:

U(+) ∼ M8
EW /M4

Pl ∼ 10−120M4
Pl , (29)

which is the right order of magnitude for the present epoch’svacuum energy
density as already realized in [15].

On the other hand, if we take the order of magnitude of the coupling constants
in the effective potentialf1 ∼ f2 ∼ (10−2MPl)

4, then the order of magnitude
of the vacuum energy density of the early Universe becomes:

U(−) ∼ f2
1 /f2 ∼ 10−8M4

Pl , (30)
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which conforms to the Planck Collaboration data [16] implying the energy scale
of inflation of order10−2MPl.

4 Quintessential Inflation and Unified Dark Energy and Dark Ma tter

Now we will extend our results from the previous two sectionsby considering
a combination of the both models above (14) and (1) – gravity coupled to both
“inflaton” and “darkon” scalar fields within the non-Riemannian volume-form
formalism, as well as we will also add coupling to the bosonicsector of the
electro-weak model:

S =

∫
d4xΦ(A)

[
gµνRµν(Γ) + L1(ϕ,X)− gµν

(
∇µσa)

∗∇νσa − V0(σ)
]
+

∫
d4xΦ(B)

[
L2(ϕ,X)− 1

4g2
F 2(A)− 1

4g′ 2
F 2(B) + Φ(H)√−g

]

+

∫
d4x

(√−g +Φ(C)
)
L(u, Y ) . (31)

Here we are using the same notations as in (15)-(16), (2)-(3)and in addition:

• σ ≡ (σa) is a complexSU(2) × U(1) iso-doublet scalar field with the
isospinor indexa = +, 0 indicating the correspondingU(1) charge. The
gauge-covariant derivative acting onσ reads:

∇µσ =
(
∂µ − i

2
τAAA

µ − i

2
Bµ

)
σ , (32)

with 1
2 τA (τA – Pauli matrices,A = 1, 2, 3) indicating theSU(2) genera-

tors andAA
µ (A = 1, 2, 3) andBµ denoting the correspondingSU(2) and

U(1) gauge fields.
• The “bare”σ-field potential is of the same form as the standard Higgs

potential:

V0(σ) =
λ

4

(
(σa)

∗σa − µ2
)2

. (33)

• The gauge field kinetic terms are (all indicesA,B,C = (1, 2, 3)):

F 2(A) ≡ FA
µν(A)FA

κλ(A)gµκgνλ , F 2(B) ≡ Fµν(B)Fκλ(B)gµκgνλ ,

FA
µν(A) = ∂µAA

ν − ∂νAA
µ + ǫABCAB

µAC
ν , Fµν(B) = ∂µBν − ∂νBµ .

(34)

Following the same steps as above, we derive from (31) the physicalEinstein-
frametheory w.r.t. Weyl-rescaled Einstein-frame metricḡµν (19) and perform
an additional “darkon” field redefinitionu → ũ:

∂ũ

∂u
=

(
V (u)− 2M0

)
−

1

2 ; Y → Ỹ = −1

2
ḡµν∂µũ∂ν ũ . (35)
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The Einstein-frame action reads:

S =

∫
d4x

√−ḡ
[
R(ḡ) + Leff

(
ϕ, X̄, Ỹ ;σ,A,B

)]
, (36)

where (recallX̄ = − 1
2 ḡ

µν∂µϕ∂νϕ):

Leff

(
ϕ, X̄, Ỹ ;σ,A,B

)
= X̄ − Ỹ

(
V1(ϕ) + V0(σ) +M1 − χ2be

−αϕX̄
)

+Ỹ 2
[
χ2(U(ϕ) +M2)− 2M0

]
+ L[σ,A,B] , (37)

with:

L[σ,A,B] ≡ −ḡµν
(
∇µσa)

∗∇νσa −
χ2

4g2
F̄ 2(A) − χ2

4g′2
F̄ 2(B) . (38)

Tha Lagrangian (37) is again of a generalized “k-essence” form (non-linear w.r.t.
both “inflaton” and “darkon” kinetic terms̄X andỸ ). M0 andM1,M2, χ2 are
the same integration constants as in (4) and (21), respectively.

The action (36)-(37) possesses an obvious Noether symmetryunder the shift
ũ → ũ+ const with current conservation:

∂µ

(√−ḡḡµν∂ν ũ
∂Leff

∂Ỹ

)
= 0 , (39)

which is Einstein-frame counterpart of the originalgµν-frame “dust” dark matter
density conservation (7).

For static (spacetime idependent) scalar field configurations (here the original
“darkon” fieldu is static, whereas the transformed oneũ (35) isnot– this is due
to the dynamical Lagrangian “darkon” constraint (4)) we have:

Ỹ
∣∣
static

=
V1(ϕ) + V0(σ) +M1

2χ2

(
U(ϕ) +M2

)
− 4M0

, (40)

which upon substitution into (37) yields the following total scalar field effective
potential (cf. Eq.(25)):

Ueff

(
ϕ, σ

)
=

(
V1(ϕ) + V0(σ) +M1

)2

4
[
χ2(U(ϕ) +M2)− 2M0

] (41)

As for the purely “inflaton” potential (25), the “inflaton+Higgs” potential (41)
similarly possess two infinitely large regions:(−) flat region for large negative
and(+) flat region and large positive values of the “inflaton”, respectively, as in
Fig.1 (whenσ is fixed).
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• In the(+) flat region (41) reduces to (cf. (27)):

Ueff

(
ϕ, σ

)
≃ U(+)(σ) =

(
λ
4

(
(σa)

∗σa − µ2
)2

+M1

)2

4
(
χ2M2 − 2M0

) , (42)

which obviously yields as a lowest lying vacuum the Higgs one:

|σ| = µ , (43)

i.e., in the “late” (post-inflationary) Universe we have the standard spon-
taneous breakdown ofSU(2)× U(1) gauge symmetry. Moreover, at the
Higgs vacuum (43) we obtain from (42) a dynamically generated cosmo-
logical constantΛ(+) of the “late” Universe:

U(+)(µ) ≡ 2Λ(+) =
M2

1

4
(
χ2M2 − 2M0

) . (44)

• In the(−) flat region (41) reduces to the same expression as in (26), which
is σ-field idependent. Thus, the Higgs-like iso-doublet scalarfield σa

remainsmasslessin the “early” (inflationary) Universe and accordingly
there isnoelectro-weak spontaneous symmetry breaking there.

To study cosmological implications of (31) we perform a Friedmann-Lemaitre-
Robertson-Walker (FLRW) reduction to the class of FLRW metrics:

ds2 = ḡµνdx
µdxν = −N2(t)dt2 + a2(t)d~x.d~x (45)

and take the “inflaton” and “darkon” to be time-dependent only:

X̄ =
1

2

.
ϕ
2

, Ỹ =
1

2
v2 , v ≡ dũ

dt
. (46)

Upon variation w.r.t. “lapse”N(t) we take the usual gaugeN(t) = 1.

Now, the FLRW reduction of the “darkon”̃u-eqs. of motion (39) yields acubic
algebraiceq. for its velocityv:

[
χ2(U(ϕ)+M2)−2M0

]
v3−v

(
V1(ϕ)+V0(σ)+M1−χ2be

−αϕ 1

2

.
ϕ
2
)
− c0
a3

= 0 ,

(47)
where c0 is an integration constant – the conserved Noether charge of(39)
(“dust” dark matter particle number).

The equations of motion w.r.t.N(t) anda(t) (1st and 2nd Friedmann eqs.) read:

.
a
2

a2
=

1

6
ρ ,

..
a

a
= − 1

12

(
ρ+ 3p

)
, (48)
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where the energy densityρ and pressurep are given by:

ρ =
1

2

.
ϕ
2
(
1 +

3

4
χ2be

−αϕv2
)
+

v2

4

(
V1(ϕ) + V0(σ) +M1

)
+

3

4

c0
a3

v ,(49)

p =
1

2

.
ϕ
2
(
1 +

1

4
χ2be

−αϕv2
)
− v2

4

(
V1(ϕ) + V0(σ) +M1

)
+

1

4

c0
a3

v .(50)

Finally, the equation of motion w.r.t. “inflaton”ϕ reads:

0 =
d

dt

[
a3

.
ϕ
(
1 +

χ2

2
be−αϕv2

)]
+ α

χ2 U(ϕ) c0 v

χ2

(
U(ϕ) +M2

)
− 2M0

+

αa3v2
{ .
ϕ
2

4
χ2be

−αϕ − 1

2

(
V1(ϕ) + V1(σ)

)
+

χ2U(ϕ)
[
V1(ϕ) + V0(σ) +M1 − χ2be

−αϕ
.
ϕ
2
/2

]

2
[
χ2

(
U(ϕ) +M2

)
− 2M0

]
}
. (51)

First, let us consider the(+) flat region (27) of the inflaton potential (41) (right
flat region on Fig.1) for large positive values ofϕ corresponding to the “late”
(nowadays) Universe. In this case we have from (47), (49) and(50) (taking into
account (33) and (43)):

v =
[ M1

χ2M2 − 2M0

] 1

2

+
1

2M1

c0
a3

+O
( c20
a6

)
, (52)

ρ =
M2

1

4(χ2M2 − 2M0)
+

c0
a3

[ M1

χ2M2 − 2M0

] 1

2

+O
( c20
a6

)
, (53)

p = − M2
1

4(χ2M2 − 2M0)
+ O

( c20
a6

)
. (54)

Substituting (53) into the first Friedmann Eq.(48) we obtain(the solution for
a(t) below first appeared in [17]):

a(t) ≃
( C̃0

2Λ(+)

)1/3

sinh2/3
(√3

4
Λ(+) t

)
,

.
ϕ≃ const sinh−2

(√3

4
Λ(+) t

)
,

(55)
with Λ(+) as in (44) and̃C0 ≡ c0

√
M1(χ2M2 − 2M0)−1.

Relations (53) and (54) straightforwardly show that in the “late” (nowadays)
Universe we have explicit unification of dark energy (given by the dynamically
generated cosmological constant (44) – first terms on the r.h.s. of (53) and (54)),
and dark matter given as a “dust” fluid contribution – second term on the r.h.s.
of (53).

Next consider the(−) flat region (26) of the inflaton potential (41) (left flat
region on Fig.1) for large negative values ofϕ corresponding to the “early” (“in-
flationary”) Universe. We will consider the “slow-roll” inflationary epoch [18]

11
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(i.e.,
..
ϕ,

.
ϕ
2
,
.
ϕ
3
, . . . – ignored) :

v = e
1

2
αϕ

[
v1 +

1

2f1

c0
a3

e
1

2
αϕ +O

(
eαϕ

)]
, v1 ≡ −

( f1
χ2f2

) 1

2

, (56)

ρ = U(−) − e
1

2
αϕ|v1|

c0
a3

+
1

4
M̃v21e

αϕ +O
(
e3αϕ/2,

c20
a6

)
, (57)

U(−) ≡
f2
1

4χ2f2
, M̃ ≡ M1 + V0(σ = 0) = M1 +

λ

4
µ4 . (58)

Friedmann (48) and inflaton (51) equations can be solved analytically in the
“slow-roll” approximation for the special relation among parameters1 + bf1

2f2
=

2
3α

2. In the latter case we have:

.
ϕ − |v1|

2αH0

[c0
c31

e−3H0t − 1

4
M̃ |v1|

]
eαϕ = 0 , H0 ≡

√
1

6
U(−) , (59)

wherec1 is another integration constant. For the inflaton field and Friedmann
scale factor we obtain:

e−αϕ(t) = c2 +
|v1|
2αH0

( c0
3c31H0

e−3H0t +
1

4
M̃ |v1| t

)
, (60)

a(t) = c1e
H0t e−

1

6
αϕ(t) , (61)

wherec2 is a third integration constant.

Eqs.(59)-(61) display the effect of the presence of “dusty”dark matter (c0 6= 0)
on the “slow-roll” inflationary evolution (here we must have

.
ϕ≥ 0):

•
.
ϕ (t) > 0 for t < t∗ ≡ 1

3H0

ln
(
4c0(M̃ |v1|c31)−1

)
, where

.
ϕ (t∗) = 0, i.e.,

ϕ(t) rolls forward untillt = t∗.

• According to (61) the prefactore−
1

6
αϕ(t) of the inflationary time expo-

nentialeH0t drops down witht ≤ t∗.

For t > t∗ the evolution described by the inflaton solution (60)cannot anymore
be valid, since according to (59) the inflaton velocity is negative fort > t∗, i.e.,
for t > t∗ the inflaton would start rolling backwards. This non-validity of (60)
is due to the fact that fort ∼ t∗ the inflaton valueϕ(t) exits the(−) flat region
of the inflaton effective potential (41) (left flat region on Fig.1). The latter sets
the following constraint on the integration constantc2 in (60) for the latter to be
valid:

e−αϕ(t∗) ≡ c2 +
M̃

f1

[
1 + ln

( 4c0

M̃ |v1|c31

)]
<

f1(χ2M2 − 2M0)

f2χ2M̃
≡ e−αϕmax ,

(62)
whereϕmax is the location of the maximum of the inflaton potential (41) –the
small “bump” on the left half of Fig.1, which is just outside the(−) flat region.
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Let us note that the relative height∆U(−) of the above mentioned “bump” of the
inflaton potential (41) w.r.t. the height of the(−) flat region (26):

∆U(−) ≡ Ueff(ϕmax, µ)−
f2
1

4χ2f2
=

M̃2

4
(
χ2M2 − 2M0

) (63)

(M̃ as in (58)) is of the same order of magnitude as the small effective cosmo-
logical constant (44) in the(+) flat region (“late” Universe).

5 Conclusions

The non-Riemannian volume-form formalism (i.e., employing alternative non-
Riemannian reparametrization covariant integration measure densities on the
spacetime manifold) has substantial impact in any general-coordinate or
reparametrization invariant field theories.

• The non-Riemannian volume-form formalism in gravity/matter theories
naturally provides a self-consistent unified description of dark energy as
dynamically generated cosmological constant and dark matter as a “dust”
fluid flowing along geodesics realized through the dynamics of a single
“darkon” scalar field. This unification becomes manifest within the “late”
(dark energy dominated) epoch of the Universe’s evolution.

• Employing two different non-Riemannian volume-forms leads to the con-
struction of a new class of “quintessential” gravity-matter models, pro-
ducing an effective scalar “inflaton” potential with two infinitely large flat
regions. This allows for a unified description of both early Universe infla-
tion as well as of present dark energy dominated epoch.

• The above non-conventional “quintessential” gravity-matter models can
be extended to include both the “darkon” as well as the fields comprising
the bosonic sector of the electroweak theory, in particular– a Higgs-like
scalarσ, whereby producingdynamicallyin the post-inflationary epoch an
effective potential forσ of the canonical electroweak symmetry breaking
Higgs form, while keeping the electroweak gauge symmetry intact in the
early inflationary Universe.

Let us also note that application of the non-Riemannian volume-form formalism
in the context of minimalN = 1 supergravity [19] naturally generates adynam-
ical cosmological constantas an arbitrary dimensionful integration constant,
which triggersspontaneous supersymmetry breakingand mass generation for
the gravitino – a new mechanism for thesupersymmetric Brout-Englert-Higgs
effect.
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