
3rd National Congress on Physical Sciences, 29 Sep. – 2 Oct. 2016, Sofia
Section: Mathematical Physics

Multiparameter Quantum Minkowski Space-Time
and Quantum Maxwell Equations Hierarchy

V.K. Dobrev
Institute for Nuclear Research and Nuclear Energy,
Bulgarian Academy of Sciences,
72 Tsarigradsko Chaussee, 1784 Sofia, Bulgaria

Abstract. Earlier we have proposed new q-Maxwell equations which are
the first members of an infinite new hierarchy of q-difference equations.
We have used an indexless formulation in which all indices are traded for
two conjugate variables, z, z̄. We proposed also new q-Minkowski coordi-
nates which together with z, z̄ can be interpreted as the six local coordi-
nates of a SUq(2, 2) flag manifold. In the present paper we generalise
the main ingredients of this construction to the multiparameter case
using the seven-parameter quantum group deformation of GL(4) and
U(gl(4)) and the four-parameter quantum group deformation of SL(4)
and U(sl(4)). The main result is the explicit presentation of the mul-
tiparameter quantum Minkowski space-time within the corresponding
deformed flag manifold.

1 Introduction

Invariant differential equations play a very important role in the descrip-
tion of physical symmetries - recall, e.g., the examples of Dirac, Maxwell
equations, (for more examples cf., e.g., [1]). It is important to construct
systematically such equations for the setting of quantum groups, where
they are expected as (multiparameter) q-difference equations.

In the present paper we consider the construction of deformed multi-
parameter analogs of some conformally invariant equations, in particu-
lar, the Maxwell equations, following the approach of [2]. We start with
the classical situation and we first write the Maxwell equations in an in-
dexless formulation, trading the indices for two conjugate variables z, z̄.
This formulation has two advantages. First, it is very simple, and in fact,
just with the introduction of an additional parameter, we can describe
a whole infinite hierarchy of equations, which we call the Maxwell hi-
erarchy. Second, we can easily identify the variables z, z̄ and the four
Minkowski coordinates with the six local coordinates of a flag manifold
of SL(4) and SU(2, 2). Thus, one may look at this as a nice example of
unifying internal and external degrees of freedom.
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Next we need the deformed analogs of the above constructions. The
specifics of the approach of [2] is that one needs also the complexifica-
tion of the algebra in consideration. Thus for the q - conformal algebra
we have used the Uq(sl(m)) apparatus of [3] in the case m = 4. Thus,
in [4] we have proposed new q-Minkowski coordinates as part of the ap-
propriate q - flagmanifold. Using the corresponding representations and
intertwiners of Uq(sl(4)) we have also derived an infinite hierarchy of q-
Maxwell equations.

In the present paperwe generalise themain ingredients of the above con-
struction to the multiparameter case. From [5] we know that the mul-
tiparameter quantum group deformation of GL(m), U(gl(m)), SL(m),
U(sl(m)). We apply this for m = 4 in order to consider multiparameter
deformations of the conformal group, of Minkowski space-time and of
Maxwell equations.

2 Classical Setting

It is well known that Maxwell equations

∂µFµν = Jν , ∂µ∗Fµν = 0 , (1)

or, equivalently

∂kEk = J0 (= 4πρ),

∂0Ek − εk`m∂`Hm = Jk (= −4πjk),

∂kHk = 0 ,

∂0Hk + εk`m∂`Em = 0 ,

(2)

where Ek ≡ Fk0, Hk ≡ (1/2)εk`mF`m, can be rewritten as

∂kF
±
k = J0 , ∂0F

±
k ± iεk`m∂`F

±
m = Jk , (3)

F±
k ≡ Ek ± iHk . (4)

Not so well known is the fact that the eight equations in (3) can be rewrit-
ten as two conjugate scalar equations in the following way:

I+F+(z) = J(z, z̄) , I−F−(z̄) = J(z, z̄) , (5)

I+ = z̄∂+ + ∂v −
1

2

(
z̄z∂+ + z∂v + z̄∂v̄ + ∂−

)
∂z ,

I− = z∂+ + ∂v̄ −
1

2

(
z̄z∂+ + z∂v + z̄∂v̄ + ∂−

)
∂z̄ ,

(6)

x± ≡ x0 ± x3, v ≡ x1 − ix2, v̄ ≡ x1 + ix2, (7)
∂± ≡ ∂/∂x±, ∂v ≡ ∂/∂v, ∂v̄ ≡ ∂/∂v̄,
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F+(z) ≡ z2(F+
1 + iF+

2 )− 2zF+
3 − (F+

1 − iF
+
2 ) ,

F−(z̄) ≡ z̄2(F−
1 − iF

−
2 )− 2z̄F−

3 − (F−
1 + iF−

2 ) ,

J(z, z̄) ≡ z̄z(J0 + J3) + z̄(J1 − iJ2) + z(J1 + iJ2) + (J0 − J3) ,

(8)

where we continue to suppress the xµ, resp., x±, v, v̄, dependence in F
and J . (The conjugation mentioned above is standard and in our terms
it is : I+ ←→ I−, F+(z)←→ F−(z̄).)

It is easy to recover (3) from (5) – just note that both sides of each equa-
tion are first order polynomials in each of the two variables z and z̄, then
comparing the independent terms in (5) one gets at once (3).

Writing the Maxwell equations in the simple form (5) has also important
conceptual meaning. The point is that each of the two scalar operators
I+, I− is indeed a single object, namely it is an intertwiner of the con-
formal group, while the individual components in (1) - (3) do not have
this interpretation. This is also the simplest way to see that the Maxwell
equations are conformally invariant, since this is equivalent to the inter-
twining property.

Let us be more explicit. The physically relevant representations Tχ
of the 4-dimensional conformal algebra su(2, 2) may be labelled by
χ = [n1, n2; d], where n1, n2 are non-negative integers fixing finite-
dimensional irreducible representations of the Lorentz subalgebra, (the
dimension being (n1 + 1)(n2 + 1)), and d is the conformal dimension
(or energy). (In the literature these Lorentz representations are labelled
also by (j1, j2) = (n1/2, n2/2).) Then the intertwining properties of the
operators in (6) are given by:

I+ : C+ −→ C0 , I+ ◦ T+ = T 0 ◦ I+ , (9a)
I− : C− −→ C0 , I− ◦ T− = T 0 ◦ I− , (9b)

where T a = Tχ
a

, a = 0,+,−, Ca = Cχ
a

are the representation spaces,
and the signatures are given explicitly by:

χ+ = [2, 0; 2] , χ− = [0, 2; 2] , χ0 = [1, 1; 3] , (10)

as anticipated. Indeed, (n1, n2) = (1, 1) is the four-dimensional Lorentz
representation, (carried by Jµ above), and (n1, n2) = (2, 0), (0, 2) are the
two conjugate three-dimensional Lorentz representations, (carried by
F±
k above), while the conformal dimensions are the canonical dimen-
sions of a current (d = 3), and of the Maxwell field (d = 2). We see
that the variables z, z̄ are related to the spin properties and we shall call
them ’spin variables’. More explicitly, a Lorentz spin-tensorG(z, z̄) with
signature (n1, n2) is a polynomial in z, z̄ of order n1, n2, resp. (For more
group-theoretical details, cf. [2].)
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Formulae (9), (10) are part of an infinite hierarchy of couples of first order
intertwiners. Explicitly, instead of (9), (10) we have [2]:

I+
n : C+

n −→ C0
n , I+

n ◦ T+
n = T 0

n ◦ I+
n , (11a)

I−n : C−
n −→ C0

n , I−n ◦ T−
n = T 0

n ◦ I−n , (11b)

where T an = Tχ
a
n , Can = Cχ

a
n , and the signatures are:

χ+
n = [n+ 2, n; 2], χ−

n = [n, n+ 2; 2], χ0
n = [n+ 1, n+ 1; 3], n ∈ ZZ+ ,

(12)
while instead of (5) we have

I+
n F

+
n (z, z̄) = Jn(z, z̄) ,

I−n F
−
n (z, z̄) = Jn(z, z̄) ,

(13)

I+
n =

n+ 2

2

(
z̄∂+ + ∂v

)
− 1

2

(
z̄z∂+ + z∂v + z̄∂v̄ + ∂−

)
∂z

I−n =
n+ 2

2

(
z∂+ + ∂v̄

)
− 1

2

(
z̄z∂+ + z∂v + z̄∂v̄ + ∂−

)
∂z̄

(14)

while F+
n (z, z̄), F−

n (z, z̄), Jn(z, z̄), are polynomials in z, z̄ of degrees
(n+ 2, n), (n, n+ 2), (n+ 1, n+ 1), resp., as explained above. If we want
to use the notation with indices as in (1), then F+

n (z, z̄) and F−
n (z, z̄) cor-

respond to Fµν,α1,...,αn which is antisymmetric in the indices µ, ν, sym-
metric in α1, . . . , αn, and traceless in every pair of indices,1 while Jn(z, z̄)
corresponds to Jµ,α1,...,αn

which is symmetric and traceless in every pair
of indices. Note, however, that the analogs of (1) would be much more
complicated if one wants to write explicitly all components. The crucial
advantage of (13) is that the operators I±n are given just by a slight gen-
eralization of I± = I±0 .

We call the hierarchy of equations (13) the Maxwell hierarchy. The
Maxwell equations are the zero member of this hierarchy.

Formulae (11)–(13) are part of a much more general classification
scheme [2], involving also other intertwining operators, and of arbitrary
order. This scheme was adapted to the q-case in [3]. A subset of this
scheme are two conjugate infinite two-parameter families of representa-
tions which are intertwined by the same operators (14). This is omitted
here for the lack of space, cf. [2].

To proceed further we rewrite (14) in the following form:

I+
n =

1

2

(
(n+ 2)I1I2 − (n+ 3)I2I1

)
, (15a)

I−n =
1

2

(
(n+ 2)I3I2 − (n+ 3)I2I3

)
, (15b)

1In 4D conformal field theory the families of mixed tensors Fµν,α1,...,αn appear, e.g., in
the operator product expansion of two spin 1/2 fields [6].
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where
I1 ≡ ∂z , I2 ≡ z̄z∂+ + z∂v + z̄∂v̄ + ∂− , I3 ≡ ∂z̄ . (16)

It is important to note that group-theoretically the operators Ia corre-
spond to the right action of the three simple roots of the root system of
sl(4), while the operators I±n are obtained from the lowest possible sin-
gular vectors corresponding to the two non-simple non-highest roots [2].

This is the form that we generalize for the deformed case. In fact, we can
write at once the general form, which follows from the analysis of [3]:

Î
+

n =
1

2

(
[n+ 2]q Î1Î2 − [n+ 3]q Î2Î1

)
, (17a)

Î
−
n =

1

2

(
[n+ 2]q Î3Î2 − [n+ 3]q Î2Î3

)
. (17b)

Here Î
±
n are obtained from the lowest possible singular vectors of

Uq(sl(4)), corresponding (as above) to the two non-simple non-highest
roots [3].

To proceed further, we should make this form explicit by first generaliz-
ing the variables, then the functions and the operators.

3 Multiparameter Quantum Minkowski Space-Time

The variables x±, v, v̄, z, z̄ have definite group-theoretical mean-
ing, namely, they are six local coordinates on the flag manifold
Y = GL(4)/B̃ = SL(4)/B, where B̃, B are the Borel subgroups of
GL(4), SL(4), respectively, consisting of all upper diagonalmatrices. Un-
der a natural conjugation (cf. also below) this is also a flag manifold of
the conformal group SU(2, 2).

We know from [5] what are the properties of the non-commutative coor-
dinates on the multiparameter SLq,q flag manifold.

There is a technicality here, namely, that we start from the multipa-
rameter deformation GLq,q(m) of GL(m) (given by Sudbery [7])
which depends on (m2 − m + 2)/2 parameters q, qij , 1 ≤ i <
j ≤ m. (The parametrisation is such that the standard one-parameter
deformation is obtained for all qij = q.) Thus, the flag manifold
Ỹq,q = GLq,q(m)/B̃q,q(m) depends on the same number of parame-
ters. For m = 4 the explicit relations are (λ ≡ q − q−1):

x+v =
q23q34

q24
vx+ , v̄x+ =

q14

q12q24
x+v̄ , (18)

x−v =
q13

q12q23
vx− , v̄x− =

q13q34

q14
x−v̄ ,

v̄v =
q13q34

q12q24
vv̄ ,

q q24

q23q34
x+x− =

q12q24

q q14
x−x+ + λvv̄ ,
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z̄z =
q13q24

q14q23
zz̄ , (19)

z̄x+ =
q13q34

q14
x+z̄ , z̄x− =

q23q34

q2q24
x−z̄ + λv̄ ,

z̄v̄ =
q23q34

q24
v̄z̄ , z̄v =

q13q34

q2q14
vz̄ + λx+ ,

x+z =
q14

q12q24
zx+ , x−z =

q2q13

q12q23
zx− − λv ,

vz =
q13

q12q23
zv , v̄z =

q2q14

q12q24
zv̄ − λx+ .

Thus, in (18) we have a seven-parameter quantum Minkowski space-
time.

We note that when all deformation parameter are phases, i.e., |q| = 1,
|qij | = 1, and in addition holds the following relations:

q13 =
q12q24

q34
, q14 =

q12q
2
24

q23q34
, (20)

then the commutation relations (18) and (19) are preserved by an anti-
linear anti-involution ω acting as :

ω(x±) = x± , ω(v) = v̄ , ω(z) = z̄ . (21)

Further, we recall from [5] that the dual quantumalgebra Uq,q(gl(m)) has
the quantum algebra Uq,q(sl(m)) as a commutation subalgebra, but
not as a co-subalgebra. In order to achieve the complete splitting of
Uq,q(sl(m)) we have to impose some relations between the parameters,
thus the genuine multiparameter deformation Uq,q(sl(m)) depends on
(m2 − 3m+ 4)/2 parameters. Using the same conditions we also ensure
that we can restrict from GLq,q(m) to SLq,q(m).

Thus, in the case of m = 4 for the genuine Uq,q(sl(4)) we have four
parameters. Explicitly, we achieve this by imposing that the parameters
qi,i+1 are expressed through the rest as:

q12 =
q3

q13q14
, q23 =

q4

q13q14q24
, q34 =

q3

q14q24
. (22)

Thus, the four-parameter quantum Minkowski space-time and the em-
bedding quantum flag manifold Yq,q are given by (18) and (19) with (22)
enforced.

If we would like to enforce also the conjugation (21) then there are more
relations between the deformation parameters, namely, we get:

q12 = q23 = q34 =
q2

q14
, q13 = q24 = q . (23)
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Thus, in this case we have a two-parameter deformation and using the
above relations (18) and (19) simplify as follows:

x+v = p vx+ , v̄x+ = p−1 x+v̄ , (24)
x−v = p−1 vx− , v̄x− = p x−v̄ ,

v̄v = vv̄ ,
q

p
x+x− =

p

q
x−x+ + λvv̄ ,

z̄z = zz̄ , (25)

z̄x+ = p x+z̄ , z̄x− =
p

q2
x−z̄ + λv̄ ,

z̄v̄ = p v̄z̄ , z̄v =
p

q2
vz̄ + λx+ ,

x+z = p−1 zx+ , x−z =
q2

p
zx− − λv ,

vz = p−1 zv , v̄z =
q2

p
zv̄ − λx+ ,

where p ≡ q3/q2
14.

4 Multiparameter Quantum Maxwell Equations Hierarchy

The order of variables hinted in (18),(19) is related to the normal ordered
basis of the quantum flag manifold Yq,q considered as an associative
algebra:

ϕ̂ijk`mn = zi vj xk− x`+ v̄m z̄n , i, j, k, `,m, n ∈ ZZ+ . (26)

We introduce now the representation spaces Cχ, χ = [n1, n2; d]. The el-
ements of Cχ , which we shall call (abusing the notion) functions, are
polynomials in z, z̄ of degrees n1, n2, resp., and formal power series in the
quantum Minkowski variables. Namely, these functions are given by:

ϕ̂n1,n2
(Ȳ ) =

∑
i,j,k,`,m,n∈ZZ+

i≤n1, n≤n2

µn1,n2

ijk`mn ϕ̂ijk`mn , (27)

where Ȳ denotes the set of the six coordinates onYq,q. Thus the quantum
analogs of F±

n , Jn, cf. (13), are:

F̂
+

n = ϕ̂n+2,n(Ȳ ) , F̂
−
n = ϕ̂n,n+2(Ȳ ) , Ĵn = ϕ̂n+1,n+1(Ȳ ) . (28)

Using the above machinery we can present a deformed version of the
Maxwell hierarchy of equations. First, we mention that the explicit form
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of the operators Ia in (16) is obtained by the infinitesimal right action
of the three simple root generators of sl(4) on the flag manifold Y (fol-
lowing the procedure of [2]). In the deformed case the right action of
Uq,q(sl(4)) on Yq,q is known from [5], thus, we have:

Îa = πR(X−
a ) (29)

From this we obtain the multi-parameter quantumMaxwell hierarchy of
equations by substituting the operators of (29) in (17), i.e., the final result
is:

Î
+

n F̂
+

n = Ĵn , Î
−
n F̂

−
n = Ĵn . (30)

The reason that we can use (17) is that the multiparameter Uq,q(sl(4))
depends only on q as a commutation subalgebra, while the dependence
on the other parameters is exhibited only in its co-algebra structure and
in the explicit expressions of πR(X−

a ).

Remark: Certainly, as we did in the one-parameter case [4], we would
like to present (29) and (30) more explicitly, cf. [8].
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