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Abstract.We consider a RG flow in a general ŝu(2) coset model perturbed
by the least relevant field. The perturbing field as well as some particular
fields of dimension close to one are constructed recursively in terms of
lower level fields. Using this construction we obtain the structure con-
stants and the four-point correlation functions in the leading order. This
allows us to compute the mixing coefficients among the fields in the UV
and the IR theory.
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In this paper we consider the general ŝu(2) coset modelM(k, l) [1] per-
turbed by the least relevant operator. Recently, there was some interest
in the calculations of the renormalization group (RG) properties of such
theories, like N = 0 (Virasoro) [2] and its N = 1 supersymmetric ex-
tension [3]. They are just particular cases ofM(k, l). It is known [4] that
there exists an infrared fixed point of the renormalization group flow of
this theory which coincides with the modelM(k − l, l). Here we are in-
terested in the mixing of certain fields under the corresponding RG flow.
It is known that the mixing coefficients coincide for l = 1 (Virasoro) and
l = 2 (superconformal) theories up to the second order of the perturba-
tion theory [3]. We will show that this is the case in the general theory,
i.e. they do not depend on l and are finite up to the second order. Calcu-
lations up to the second order is always a challenge even in two dimen-
sions. The problem is that one needs in addition to the structure con-
stants also the corresponding four-point functions which are not known
exactly. Fortunately, it turns out that we need the value of these func-
tions up to the zero order of the small parameter ε. Basic ingredients
for the computation of the correlation functions in two dimensions are
the conformal blocks. They are quite complicated objects and a close
form is not known. We find it convenient, following [4], to use the con-
struction presented in [5]. Namely, we define the perturbing field and the
other fields in consideration recursively as a product of lower level fields.
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Then the corresponding structure constants and four-point functions at
some level l, governing the perturbation expansion, can be obtained re-
cursively from those of the lower levels or finally from the Virasoro min-
imal models themselves by certain projected tensor product.

Consider a two-dimensional CFTM(k, l) based on the coset

ŝu(2)k × ŝu(2)l
ŝu(2)k+l

,

where k and l integers, we assume k > l. It is written in terms of ŝu(2)k
WZNWmodels with current Ja, k is the level. The latter are CFT’s with a
stress tensor expressed through the currents by the Sugawara construc-
tion, the central charge is ck = 3k

k+2 . The energy momentum tensor of
the coset is then T = Tk + Tl − Tk+l and

c =
3kl(k + l + 4)

(k + 2)(l + 2)(k + l + 2)
=

3l

l + 2

(
1− 2(l + 2)

(k + 2)(k + l + 2)

)
.

The dimensions of the primary fields φm,n(l, p) of the “minimal models”
(m,n are integers) are computed in [6]

∆m,n(l, p) =
((p+ l)m− pn)2 − l2

4lp(p+ l)
+

s(l − s)
2l(l + 2)

, (1)

= |m− n|(mod(l)), 0 ≤ s ≤ l,
1 ≤ m ≤ p− 1, 1 ≤ n ≤ p+ l − 1,

where we introduced p = k + 2 (note that we inverted k and l in the def-
inition of the fields).

In this paper we will use a description of the theory M(k, l) presented
in [5]. It was shown there that this theory is not independent but can be
built out of products of theories of lower levels. Schematically this can
be written as a recursion

M(1, l − 1)×M(k, l) = P(M(k, 1)×M(k + 1, l − 1)), (2)

whereP in the RHS is a specific projection. It allows themultiplication of
fields of the same internal indices and describes primary and descendent
fields.

In the following we will be interested in the CFTM(k, l) perturbed by the
least relevant field. The theory is described by the Lagrangian

L(x) = L0(x) + λφ̃(x) ,

where L0(x) describes the theoryM(k, l) itself. We define the field φ̃ =
φ̃1,3 in terms of lower level fields

φ̃1,3(l, p) = a(l, p)φ1,1(1, p)φ̃1,3(l − 1, p+ 1)

+ b(l, p)φ1,3(1, p)φ3,3(l − 1, p+ 1). (3)
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Here the field φ3,3(l, p) is just a primary field form (1). The dimension of
the field (3) is:

∆ = ∆1,3 +
l

l + 2
= 1− 2

p+ l
= 1− ε. (4)

In this paper we consider the case p→∞ and assume that ε= 2
p+l�1 is a

small parameter. The coefficients a(l, p) and b(l, p) aswell as the structure
constants of the fields involved in the construction (3) can be found by
demanding the closure of the fusion rules [4].

The mixing of the fields along the RG flow is connected to the two-point
function. Up to the second order of the perturbation theory it is given by

〈φ1(x)φ2(0)〉 = 〈φ1(x)φ2(0)〉0 − λ
∫
〈φ1(x)φ2(0)φ̃(y)〉0d2y

+
λ2

2

∫
〈φ1(x)φ2(0)φ̃(x1)φ̃(x2)〉0d2x1d

2x2 + · · · ,

where φ1, φ2 can be arbitrary fields of dimensions ∆1, ∆2. The first or-
der corrections are expressed through the structure constants which we
will present later. Let us focus here on the second order. One can use
the conformal transformation properties of the fields to bring the double
integral to the form∫

〈φ1(x)φ2(0)φ̃(x1)φ̃(x2)〉0d2x1d
2x2

= (xx̄)2−∆1−∆2−2∆

∫
I(x1)〈φ̃(x1)φ1(1)φ2(0)φ̃(∞)〉0d2x1 , (5)

where
I(x) =

∫
|y|2(a−1)|1− y|2(b−1)|x− y|2cd2y

and a = 2ε+∆2−∆1,b = 2ε+∆1−∆2, c = −2ε. It is well known that the
integral for I(x) can be expressed in terms of hypergeometric functions
whose behaviour around the points 0, 1 and∞ is well known. It is clear
that the integral (5) is singular. The regularization procedure consists in
introducing a parameter r in addition to the usual cut-off r0. They define
rings where the integral is convergent. Near the singular points we use
the OPE.

Let us consider the correlation function that enters the integral (5). The
basic ingredients for the computation of the four-point correlation func-
tions are the conformal blocks. According to the construction (2) any
field φm,n(l, p) (or its descendent) can be expressed recursively as a prod-
uct of lower level fields. Therefore the corresponding conformal blocks
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will be a product of lower level conformal blocks. Due to the RHS of (2)
only certain products of conformal blocks will survive the projection P.
The conformal block is a chiral object, i.e. it depends only on the chiral
coordinate x. It can be expanded as

F (x) = x∆rs−∆i1j1
−∆i2j2

∞∑
N=0

xNFN (6)

where N is called level (not to be confused with the level l of M(k, l))
and we omitted the indexes. In order to preserve the projection P in the
intermediate channel, we allow only products of conformal blocks of the
form

〈φi1,j1(x)φi2,j2(0)|r,tφi3,j3(1)φi4,j4(∞)〉1
× 〈φk1,l1(x)φk2,l2(0)|t,sφk3,l3(1)φk4,l4(∞)〉1−1

×
√
Crt(i1j1)(i2j2)C

rt
(i3j3)(i4j4)C

ts
(k1l1)(k2l2)C

ts
(k3l3)(k4l4) . (7)

Namely, only products of conformal blocks that involve the same internal
indexes in the cross channel are allowed. Note that we included explicitly
the corresponding structure constants. This is needed because they give
different relative contribution on the subsequent levels in the expansion
(6). The overall constant will define the actual structure constant. Also,
as explained in [4], we take square roots of the structure constants be-
cause our considerations are chiral, i.e. depend only on the chiral coor-
dinate x. The conformal blocks are in general quite complicated objects.
Fortunately, in view of the renormalization scheme and the regulariza-
tion of the integrals, we need to compute them here only up to the zero-
th order in ε. This simplifies significantly the problem. Once the confor-
mal blocks are known, the correlation function of spinless fields for our
M(k, l)models is written as∑

r,s

Crs|F (r, s)|2 ,

where the range of (r, s) depends on the fusion rules and Crs is the cor-
responding structure constant.

Let us consider for example the correlation function of the perturbing
field itself. The corresponding conformal blocks are linear combinations
of products of conformal blocks at levels 1 and l − 1. In view of the con-
struction (3) there are in general 16 terms. Some of them are absent be-
cause of the fusion rules in each intermediate channel. Here there are
three channels: identity φ1,1, the field φ̃1,3 itself and the descendent field
φ̃1,5 which is defined in a way similar to that of φ̃1,3. We compute the con-
formal blocks up to a sufficiently high level and make a guess (remind
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that we need the result in the leading order in ε → 0). Every internal
channel should be considered separately. Let us consider for example the
contribution of the identity. There is obviously a termwhere the identity
multiplies the conformal block Fl−1 itself. A similar result comes from a
product of F1 with a conformal block of the field φ3,3(l− 1) (equal to one
at this order). In addition there are "free terms" coming from some two-
point functions. As a result we get a recursive equation for the conformal
block Fl at level l

Fl = a4Fl−1 + b4F1 + 2a2b2 + 2a2b2x2C(31)
(13)(33)(l − 1)

(
1 +

1

(1− x)2

)
.

Since the conformal block at first level (Virasoro) and the structure con-
stant are known, this equation is easily solved. Similar considerations
lead to recursive equations in the other internal channels. Combining
altogether we finally obtain the 2D correlation function

〈φ̃(x)φ̃(0)φ̃(1)φ̃(∞)〉

=

∣∣∣∣ 1

x2(1− x)2

[
1− 2x+ (

5

3
+

4

3l
)x2 − (

2

3
+

4

3l
)x3 +

1

3
x4

]∣∣∣∣2
+

16

3l2

∣∣∣∣ 1

x(1− x)2

[
1− 3

2
x+

l + 1

2
x2 − l

4
x3

]∣∣∣∣2
+

5

9

(
2(l − 1)

l

)2 ∣∣∣∣ 1

(1− x)2

[
1− x+

l

2(l − 1)
x2

]∣∣∣∣2 . (8)

One can check that this function is crossing symmetric and has a correct
behaviour near the singular points.

We now use this function for the computation of the β-function up to
the second order. For that purpose we have to compute the integral in
(5). As we explained, the above function should be integrated over the
safe region. Near the singularities we use the OPE where the structure
constant is known [4] and reads (up to the first order in ε)

C
(1,3)
(1,3)(1,3) =

4

l
√

3
− 2
√

3ε .

Putting altogether we obtained that the finite part of the integral is sur-
prisingly simple

80π2

3l2ε2
− 88π2

lε
.

Taking into account also the first order term, we get the final result (up
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to the second order) for the two-point function of the perturbing field

G(x, λ) = 〈φ̃(x)φ̃(0)〉

= (xx̄)−2+2ε
[
1− λ 4π√

3

( 2

lε
− 3
)

(xx̄)ε

+
λ2

2

( 80π2

3l2ε2
− 88π2

lε

)
(xx̄)2ε + . . .

]
. (9)

We now introduce a renormalized coupling constant g and a renormal-
ized field φ̃g = ∂gL analogously to φ̃ = ∂λL. It is normalized by
〈φ̃g(1)φ̃g(0)〉 = 1. In this renormalization scheme the β-function is given
by [2,7]

β(g) = ελ
∂g

∂λ
= ελ

√
G(1, λ) .

One can invert this and compute the bare coupling constant and the β-
function in terms of g

λ = g + g2 π√
3

(
2

lε
− 3

)
+ g3π

2

3

(
4

l2ε2
− 10

lε

)
+O(g4), (10)

β(g) = εg − g2 π√
3

(
2

l
− 3ε)− 4π2

3l
g3 +O(g4). (11)

A nontrivial IR fixed point occurs at the zero of the β-function

g∗ =
l
√

3

2π
ε(1 +

l

2
ε). (12)

It corresponds to the IR CFTM(k − l, l) as can be seen from the central
charge difference

c∗ − c = −4(l + 2)

l
π2

∫ g∗

0

β(g)dg = −l(1 +
l

2
)ε3 − 3l2

4
(l + 2)ε4 +O(ε5).

The anomalous dimension of the perturbing field becomes

∆∗ = 1− ∂gβ(g)|g∗ = 1 + ε+ lε2 +O(ε3) ,

which matches with that of the field φ3,1(l, p − l) ofM(k − l, l) (defined
precisely below).

Let us define recursively the descendant fields φ̃n,n±2

φ̃n,n+2(l, p) =xφn,n(1, p)φ̃n,n+2(l − 1, p+ 1)

+ yφn,n+2(1, p)φn+2,n+2(l − 1, p+ 1),

φ̃n,n−2(l, p) = x̃φn,n(1, p)φ̃n,n−2(l − 1, p+ 1)

+ ỹφn,n−2(1, p)φn−2,n−2(l − 1, p+ 1),
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(where x, x̃ and y, ỹ are at (l, p)) and the derivative ∂φn,n of the primary
field

φn,n(l, p) = φn,n(1, p)φn,n(l − 1, p+ 1).

They have dimensions close to 1

∆̃n,n±2 = 1 +
n2 − 1

4p
− (2± n)2 − 1

4(p+ l)
= 1− 1± n

2
ε+O(ε2),

1 + ∆n,n = 1 +
n2 − 1

4p
− n2 − 1

4(p+ l)
= 1 +

(n2 − 1)l

16
ε2 +O(ε3).

(13)

This suggests that they mix along the RG-trajectory. To ensure this we
ask that their fusion rules with the perturbing field are closed. This re-
quirement defines the coefficients and the corresponding structure con-
stants. So we impose the conditions

φ̃1,3(l, p)φ̃n,n+2(l, p) = C(nn)
(13)(nn+2)(l, p)φn,n(l, p)

+ C(nn+2)
(13)(nn+2)(l, p)φ̃n,n+2(l, p),

φ3,3(l, p)φn,n(l, p) = C(nn+2)
(33)(nn)(l, p)φ̃n,n+2(l, p)

+ C(nn)
(33)(nn)(l, p)φn,n(l, p).

They lead to functional equations for the coefficients and the structure
constants. In order to solve these functional equations we use the fact
thatwe know the value of the structure constants C(1, p), i.e. theVirasoro
ones. Also, by construction, the fields φ3,3(l, p) and φn,n(l, p) are primary.
Finally, one can use the knowledge of the solutions for l = 1, 2, 4 [8–
10]. With all this, we can make a guess and check it directly. Here is the
solution:

C(nn)
(33)(nn)(l, p) =

Gn(p+ l − 1)

Gn(p− 1)
,

C(n+2n+2)
(33)(nn) (l, p) =

G̃n(p+ l − 1)

G̃n(p− 1)
,

C(nn+2)
(33)(nn)(l, p) =

√
l

(p− n− 1)(p+ l − n− 1)

G̃n(p+ l − 1)

Gn(p− 1)
,

C(n+2n+2)
(33)(nn+2)(l, p) = −2

√
l

(p− n− 1)(p+ l − n− 1)

Gn+2(p+ l − 1)

G̃n(p− 1)
,

C(nn)
(13)(nn)(l, p) = −(n− 1)

√
l

(p+ l − 2)(p− 2)
Gn(p+ l − 1),
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C(nn+2)
(13)(nn)(l, p) =

√
(p+ l − 2)(p− n− 1)

(p+ l − n− 1)(p− 2)
G̃n(p+ l − 1),

C(nn+2)
(13)(nn+2)(l, p) =

(
− l(n+1)+

2(p+l−2)(p− n− 1)

p+l−n−1

) Gn+2(p+ l − 1)√
l(p+l−2)(p−2)

,

C(nn+2)
(33)(nn+2)(l, p) = (1− 2l

(p− n− 1)(p+ l − n− 1)
)
G−n+2(p+ l − 1)

G−n(p− 1)
,

where we introduced the functions

Gn(p) =

[
γ3(

p

p+ 1
)γ2(

2

p+ 1
)γ2(

n− 1

p+ 1
)γ2(

p− n
p+ 1

)γ(
3

p+ 1
)

] 1
4

,

G̃n(p) =

[
γ(

p

p+ 1
)γ(

n

p+ 1
)γ(

p− n− 1

p+ 1
)γ(

3

p+ 1
)

] 1
4

.

Remind that the “structure constants” thus obtained are actually square
roots of the true structure constants C. The structure constants involv-
ing the field φ̃n,n−2(l, p) are obtained from the corresponding ones for
φ̃n,n+2(l, p) by simply changing n→ −n.
We want to compute the matrix of anomalous dimensions and the cor-
responding mixing matrix of the fields defined above. For that purpose
we compute their two-point functions up to second order and the corre-
sponding integrals (5). The first order integrals are proportional to the
structure constants we computed above. For the second order calcula-
tion we need the corresponding four point functions. They are obtained
in a way similar to that of the perturbing field φ̃(z) itself. Here is the list
of these 4-point functions:

〈φ̃(x)φ̃(0)φ̃n,n+2(1)φ̃n,n+2(∞)〉 =

=
∣∣∣ 1

x2(1− x)2

[
1− 2x+ (

5

3
+

4

3l
)x2 − (

2

3
+

4

3l
)x3 +

1

3
x4
]∣∣∣2

+
8

3l2
n+ 3

n+ 1

∣∣∣ 1

x(1− x)2

[
1− 3

2
x+

l + 1

2
x2 − l

4
x3
]∣∣∣2

+
(2(l − 1)

l

)2 (n+ 3)(n+ 4)

18n(n+ 1)

∣∣∣ 1

(1− x)2

(
1− x+

l

2(l − 1)
x2
)∣∣∣2;

〈φ̃(x)φ̃(0)φ̃n,n+2(1)φ̃n,n−2(∞)〉 =

=
1

3n

√
n2 − 4

(2(l − 1)

l

)2∣∣∣ 1

(1− x)2

(
1− x+

l

2(l − 1)
x2
)∣∣∣2;

〈φ̃(x)φ̃(0)φ̃n,n(1)φ̃n,n+2(∞)〉 =
4

3l

√
n+ 2

n
|x|−2;
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〈φ̃(x)φ̃(0)φ̃n,n(1)φ̃n,n(∞)〉 =

= |x|−4+
(n2−1)ε2

12
|x|−4

( x2

2(1−x)
+

x̄2

2(1− x̄)
+(log(1−x)+log(1−x̄))2

)
.

Let us describe briefly the renormalization scheme. We introduce renor-
malized fields φgα which are expressed through the bare ones by

φgα = Bαβ(λ)φβ (14)

(here φ could be a primary or a descendent field). The two-point func-
tions of the renormalized fields

Ggαβ(x) = 〈φgα(x)φgβ(0)〉, Ggαβ(1) = δαβ (15)

satisfy the Callan-Symanzik equation

(x∂x − β(g)∂g)G
g
αβ +

2∑
ρ=1

(ΓαρG
g
ρβ + ΓβρG

g
αρ) = 0.

The matrix of anomalous dimensions Γ that appears above is given by

Γ = B∆̂B−1 − ελB∂λB−1 , (16)

where ∆̂ = diag(∆1,∆2) is a diagonal matrix of the bare dimensions.
The matrix B, as defined in (14), is computed from the matrix of the
bare two-point functions we computed, using the normalization condi-
tion (15) and requiring the matrix Γ to be symmetric.

Let us combine the fields in consideration in a vector with components

φ1 = φ̃n,n+2, φ2 = (2∆n,n(2∆n,n + 1))−1∂∂̄φn,n, φ3 = φ̃n,n−2 .

The field φ2 is normalized so that its bare two-point function is 1.

We can write the matrix of the bare two-point functions Gα,β(x, λ) =
〈φα(x)φβ(0)〉 up to the second order in the perturbation expansion as

Gα,β(x, λ) = (xx̄)−∆α−∆β

[
δα,β − λC(1)

α,β(xx̄)ε +
λ2

2
C

(2)
α,β(xx̄)2ε + · · ·

]
.

As we already mentioned, the two-point functions in the first order are
proportional to the structure constants

C
(1)
α,β = C(1,3)(α)(β)

πγ(ε+ ∆α −∆β)γ(ε−∆α + ∆β)

γ(2ε)
.

The second order contribution is a result of the double integration in (5)
of the four-point functions we presented above. This integration goes
along the same lines as in the case of the perturbing field.
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Using the entriesC(1) andC(2) thus obtained we can apply the renormal-
ization procedure and obtain the matrix of anomalous dimensions (16).
The bare coupling constant λ is expressed through g by (10) and the bare
dimensions, up to order ε2. Evaluating this matrix at the fixed point (12),
we get:

Γg
∗

1,1 = 1 +
(20− 4n2)ε

8(n+ 1)
+
l(39− n− 7n2 + n3)ε2

16(n+ 1)
,

Γg
∗

1,2 = Γg
∗

2,1 =
(n− 1)

√
n+2
n ε(1 + lε)

n+ 1
,

Γg
∗

1,3 = Γg
∗

3,1 = 0,

Γg
∗

2,2 = 1 +
4ε

n2 − 1
+
l(65− 2n2 + n4)ε2

16(n2 − 1)
,

Γg
∗

2,3 = Γg
∗

3,2 =

√
n−2
n (n+ 1)ε(1 + lε)

n− 1
,

Γg
∗

3,3 = 1 +
(n2 − 5)ε

2(n− 1)
+
l(−39− n+ 7n2 + n3)ε2

16(n− 1)
.

Its eigenvalues are (up to order ε2)

∆g∗

1 = 1 +
1 + n

2
ε+

l(7 + 8n+ n2)

16
ε2,

∆g∗

2 = 1 +
l(n2 − 1)

16
ε2,

∆g∗

3 = 1 +
1− n

2
ε+

l(7− 8n+ n2)

16
ε2.

This result coincides with the dimensions ∆̃n+2,n(l, p−l),∆n,n(l, p−l)+1

and ∆̃n−2,n(l, p− l) of the modelM(k − l, l) up to this order. The corre-
sponding normalized eigenvectors should be identified with the fields of
M(k − l, l)

φ̃n+2,n(l, p− l) =
2

n(n+ 1)
φg

∗

1 +
2
√

n+2
n

n+ 1
φg

∗

2 +

√
n2 − 4

n
φg

∗

3 ,

φ2(l, p− l) = −
2
√

n+2
n

n+ 1
φg

∗

1 −
n2 − 5

n2 + 1
φg

∗

2 +
2
√

n−2
n

n− 1
φg

∗

3 ,

φ̃n−2,n(l, p− l) =

√
n2 − 4

n
φg

∗

1 −
2
√

n−2
n

n− 1
φg

∗

2 +
2

n(n− 1)
φg

∗

3 .

We used as before the notation φ̃ for the descendent field defined as in
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the UV theory and

φ2(l, p− l) =
1

2∆p−l
n,n (2∆p−l

n,n + 1)
∂∂̄φn,n(l, p− l)

is the normalized derivative of the corresponding primary field. We no-
tice that these eigenvectors are finite as ε → 0 with exactly the same
entries as in l = 1 [2] and l = 2 [3] minimal models. This is one of the
main results of this paper.
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