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Abstract. We develop the field theory of antiferromagnets to layered
structures on bct crystal lattices with nearest-neibour and next-nearest-
neighbour ferro- and/or antiferromagnetic interactions. For this aim
the field theoretical counterpart of a lattice Heisenberg model is derived
by standard theoretical methods: Hubbard-Stratonovich transformation
and a generalized mean-field approach. We shown that the inter-layer
interactions are a pure thermal fluctuation effect whereas the ground
state is characterized by a perfect in-layer antiferromagnetic order and
a lack of inter-layer coupling. This is a demonstration of 2D-3D dimen-
sional crossover which is supposed to occur in real antiferromagnets, for
example, in the spin-dimer antiferromagnet BaCuSi2O6.

1 Introduction

In this paper we consider (pseudo)spin-1/2 anisotropic antiferromagnets
with body-centered tetragonal lattice (BCT) (a, a, c) of volume V = L2Lz,
number of vertices N = N2

0Nz, and lattice constants (a, a, c). The spins
S(R) are located at the vertices of the BCT lattice; R= (r, z), including r
= (x, y) and z, are the discrete coordinates of the spins. Alternatively,
these antiferromagnets can be defined by Nz monolayers of N2

0 spins
(S = ±1) on the square (x, y), where the unit cell is given by(a, a). The
monolayers are at distance c each other and the inter-layer exchange spin
interactions (J⊥) are either of antiferromagnetic type (J⊥ < 0), or, of
ferromagnetic one (J⊥ > 0), whereas the in-layer spin exchange inter-
actions are definitely of antiferromagnetic type (J‖ < 0). In all cases
only nearest neighbor (nn) spin interactions are considered, which cor-
responds to the realistic point of view about the short-distance radius
of the exchange interactions. Thus we have presented the three dimen-
sional (3D) BCT lattice as interacting antiferromagnetic layers and this
seems reasonable provided the inter-layer interactions are quite weaker
than the in-layer ones (|J⊥| � |J‖|). Here we adopt this condition, al-
though our study can be performed beyond this restriction. Obviously,
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we shall consider a XXZ type of Heisenberg model of layered antiferro-
magnets.

Starting from a microscopic formulation of such type of systems we de-
rive an effective field Hamiltonian (generalized free energy [1]) which de-
scribes the thermodynamics, including relevant fluctuation phenomena
in a close vicinity of critical points of phase transitions. For this aim we
apply a coarse-graining of the description [2,3] in which the microscopic
details of the particle behavior are smeared, if not absolutely ignored,
but the quasi-macroscopic and true macroscopic (thermodynamic) be-
havior is correctly preserved in a conformity with the original micro-
scopic model. Besides, following Refs. [4,5] we essentially use a more
general framework of study. Our field theory might be used in interpre-
tation of experiments and Monte Carlo simulations on real spin dimer
systems, such as BaCuSi2O6 with interesting antiferromagnetic proper-
ties (dimensional reduction at low temperatures, chirality and frustra-
tion effects)[6,7].

Usually, the studies of antiferromagnets are performed by dividing the
original lattice in two sublattices with magnetizations of opposite di-
rections. Within this scheme the actual order parameter is one of the
sublattice magnetizations, or, which is the same the half of the differ-
ence between the two opposite magnetization vectors. Alternatively, for
a number of important problems, one may use the so-called alternat-
ing magnetization. In both cases one should work with two lattice fields
- the two sublattice magnetization fields, or, a linear transformation of
the latter to other two lattice fields - the total and alternating magneti-
zation fields. Such a two-field considerationmeets some difficulties with
the integral transformations (Hubbard-Stratonovich transformation, or,
another suitable one [1,3,4]) but in our case the study can successfully
be accomplished. Apart of the integral transformations of the spin vari-
ables the entire consideration includes several other (rotation, shift and
Fourier) transformations, application of the longwavelength approxima-
tion (LWLA), and for this reason the total derivation of the field theory
is quite lengthy. In order to confine the paper in a manageable volume
of several pages here we present a short outline of the derivation of the
field theory (Sec. 2) with a brief discussion and enumeration of possible
applications (Sec. 3).

2 Derivation of a field theory

We begin with the Heisenberg Hamiltonian:

H = H‖ +H⊥ +Hh, (1)
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where
H‖ = −

J‖

2

∑
r,z,δ

S(r, z).S(r + δ, z) (2)

is the in-layer interaction term,

H⊥ = −J⊥
2

∑
r,z;∆r,∆z

S(r, z).S(r + ∆r, z + ∆z) (3)

is the inter-layer interaction term, and

Hh = −
∑
R

h(R).S(R) (4)

is the (Zeeman) energy of interaction with a non-uniform external mag-
netic fieldH(R) = h(R)/gµB; g is the g-factor, and µB is the Bohr mag-
neton. Usually the external field is uniform h(R) ≡ h, but there are im-
portant cases when we should consider a space (R-) dependent external
filed [1]. In Eq. (2), the vector δ runs values (±a, 0) and (0,±a), namely,
describes the locations of the nn to any spin in a given layer, for example,
the zth layer. In Eq.(3), which describes the energy of the inter-layer nn
interactions, the vector∆r runs the vector values (±a/2, 0) and (0,±a/2),
and the quantity∆z takes values ±c/2.
Equations (1)-(4) represent the anisotropic antiferromagnet by the "lat-
tice spin field" S(R), which takes values at the verticesR of a BCT lattice
with a unit cell (a, a, c). Our aim is to derive a Hamiltonian of a usual field
theory, where the field depends on a spatial vector (R ≡ x) which takes
any value in the volume V of the system. Besides, the new field(s) take
continuous values rather than discrete ones (±1). Here we point out the
main steps in the derivation of the field theory.

The first step is the separation of the BCT lattice in two sublattices (la-
beled by a and b) so that two neighbor layers belong to different sublat-
tices. So, the body centered spins in the BCT lattice belong to the lattice
a, and the other spins belong to the sublattice b, or, vice versa. The local
sublattice spins are labeled by a and b, i.e., Sa(R) and Sb(R); hereafter
these labels will be used for other sublattice quantities.

The next step is the integral transformation to fields which take continu-
ous values. One may use suitable Hubbard-Stratonicich transformation
[2-3], or, alternatively, a generalized self-consistent approach [4,5]. As
shown for simpler cases, these two methods lead to one and the same
result [4,5]. For our aims we represent the total lattice field S(R) by the
sublattice fields Sa(R) and Sb(R) in the following way [2-3]

S(R) = ∆a(R)Sa(R) + ∆b(R)Sb(R), (5)
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where the auxiliary fields∆a(R) and∆b(R) are given by

∆ρ =

{
1, if R∈ ρ
0, otherwise,

where ρ = a, b.

Further, we represent the lattice field S(R) as a sum of a statistical aver-
aged value σ(R) = 〈S(R)〉 and a fluctuation part δS(R) = S(R)− σ(R).
The sublattice magnetizations Sa(R) and Sb(R) can also be represented
in this way and then one defines the mean statistical fields σa(R) and
σb(R). The standard (MF) treatment [1] implies a consideration of uni-
form statistical averages but here we keep the R-dependence of all σ-
fields.

The next step is the representation of the lattice Hamiltonian (1)-(4)
by the the sublattice fields σρ(R) and the original lattice fields Sρ(R),
(ρ = a, b), and accomplishment of the statistical summation over the
latter. Solving the partition function with respect to the discrete fields
Sρ(R) = ±1, one remains with a lattice field theory (generalized free en-
ergy, or, effective Hamiltonian) in terms of two continuous fields σρ(R),
which may take any real value unless some special physical conditions
introduce restrictions; but even in the latter case the allowed values of
the fields σρ(R) remain continuous. Thus we make a progress although
our σ-fields are still defined on the lattice and their spatial dependence
remains discrete.

At this intermediate stage of consideration, the effective free energy (ef-
fective Hamiltonian) can be represented in the following way:

F = H(0)−β−1
∑
rα,z

ln2chβ|h(a)
eff (rα, z)|−β−1

∑
rβ ,z

ln2chβ|h(b)
eff (rβ , z)|, (6)

where the subscripts α and β run sites in the sublattices a and b, respec-
tively,H(0) = H(0)

‖ +H(0)
⊥ with the Hamiltonian parts

H(0)
‖ =

J‖

2

[ ∑
rα,δ,z

σb(rα+δ, z).σa(rα, z)+
∑
rβ ,δ,z

σa(rβ+δ, z).σb(rβ , z)
]
(7)

and

H(0)
⊥ =

J⊥
2

{∑
rα,∆r
z,∆z

[
σa(rα+∆r, z+∆z)+σb(rα+∆r, z+∆z)

]
.σa(Rα)

+
∑
rβ,∆r
z,∆z

[
σb(rβ+∆r, z+∆z)+σa(rβ+∆r, z+∆z)

]
.σb(Rβ)

}
, (8)
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whereRα ≡ (rα, z) andRβ ≡ (rβ , z). The Eq. (6) contains two effective
fields which are given by

h
(a)
eff (rα, z) = h+ J‖

∑
δ

σb(rα + δ, z)

+J⊥
∑

∆r,∆z

[
σa(rα+∆r, z+∆z) +σb(rα+∆r, z+∆z)

]
(9)

and

h
(b)
eff (rβ , z) = h+ J‖

∑
δ

σa(rβ + δ, z)

+J⊥
∑

∆r,∆z

[
σb(rβ+∆r, z+∆z) +σa(rβ+∆r, z+∆z)

]
.(10)

Further calculations are relatedwith the Landau expansion [1-5] in power
series of the fields, Fourier transformations of the fields, some auxiliary
transformation of shift and rotation type, and LWLA.We denote thewave
vectors by q = (k, qz), where k = (kx, ky). Within the LWLA, k = |k| �
π/a and qz � π/c, we shall keep only the fields with q = |q| ≤ Λ, where
the upper cutoff Λ is supposed to be quite smaller than both π/a and
π/c - the end points of the Brillouin zone. Thus, with the help of the
LWLA, we perform a coarse-graining of the description by ignoring the
fields with relatively large wave vector components, and keep only the
fields with small momenta. The length 1/Λ should be of the order of the
largest characteristic length of the system (interaction radii or correla-
tion lengths far from critical points). In this way we neglect phenom-
ena of microscopic size and ensure the description of quasi-macroscopic
phenomena described with relatively large characteristic lengths up to
the true macroscopic (thermodynamic) level.

The system sizes (L,Lz) are consideredmuch larger than the length 1/Λ,
and this allows for the accomplishment of the continuum limit. The lat-
ter makes both wave vectors and spatial coordinates continuous vari-
ables. So, we achieve a usual field theory. In a consistencywith the LWLA,
only the first non-vanishing dependence of the self-energy Hamiltonian
terms are taken into account. In our case, this dependence is of quadratic
type (k2, kxky, q

2
z), which corresponds to a gradient expansion to second

order in the component of the nabla (∇-) operator. The wave vector de-
pendence of the interaction terms - whose of fourth order in the fields,
is ignored as irrelevant [1]. The more compact form of the final result
for the generalized free energy (effective field Hamiltonian) is that in the
space vectorsR rather than in the q-space representation of the fields.

Accomplishing the above mentioned steps, one obtains the following fi-
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nal result: F =
∫
dRF̂(R), where the energy density F̂ is given by

F̂ = −2βµh.σ +
1

2

[
rfσ

2 + cf (∇rσ)2 + c′f (∇zσ)2

+raϕ
2 + ca(∇rϕ)2 + c′a(∇xϕ).(∇yϕ)

]
+
β3

6

{
µ4σ4 + ν4ϕ4 + 2µ2ν2

[
σ2ϕ2 + 2(σ.ϕ)2

]}
. (11)

In Eq. (11), ∇r = (∇x,∇y), and φ and ϕ are three dimensional vector
fields given by

σ = σa + σb +
h

µ
,

ϕ = σb − σa. (12)

The parameters of this theory are expressed by the microscopic parame-
ters: µ = 2(J‖ + 2J⊥), ν = 2J‖, and

rf = µ (1− 2µβ) ,

cf =
(
J‖ + J⊥

)(
2µβ − 1

2

)
a2,

c′f = J⊥

(
2µβ − 1

2

)
c2,

ra = −ν (1 + 2νβ) ,

ca =
ν

2

(
2νβ +

1

2

)
a2,

c′a = −2J⊥

(
2νβ +

1

2

)
a2. (13)

Obviously, the field σ is the magnetization in the presence of external
magnetic field, whereas the fieldϕ is proportional to the staggered mag-
netization - the antiferromagnetic order parameter field.

3 Brief discussion

Generally, the energy density (11) contains two order parameter fields
- the magnetization field σ and the antiferromagnetic order parameter
fieldϕ, and one may suppose that this theory may describe both fer-
romagnetic and antiferromagnetic phase transitions. However, as seen
from the first equation (13), a condition for a spontaneous magnetiza-
tion (at h = 0) is given by the inequality µ > 0, i.e., 2J⊥ > |J‖|. For the
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case of weak inter-layer interaction 2J⊥ � |J‖|, a spontaneous magne-
tization has no chance to happen but antiferromagnetic structures are
possible.

As seen from the gradient terms in Eq. (11), the antiferromagnetic fluc-
tuations are of in-layer type, i.e., of 2D type. So, in a lack of interaction
with the magnetization filed σ, the antiferromagnet will behave as a 2D
system. In case of effects of the magnetization fluctuations, including
external field effects, the system may exhibit a 3D behavior. This is sup-
ported by the availability of the dependence of themagnetization fluctu-
ations on the wave vector component qz; see Eq. (11). While the theory
contains thermal fluctuations, the fluctuation effects decrease with the
decrease of the temperature. Thus one may conjecture that the ground
state may exhibit a pure 2D behavior, while a 3D behavior is more prob-
able at relatively high temperatures. The 2D-3D dimensional crossover
in such antiferromagnetic systems has been discussed by the means of
other methods [6,7] and the present theory could be used for a further
elucidation of this topic.

In order to perform amore detailed study of the possible phases and their
stability properties as well as of fluctuation phenomena and dimensional
crossovers one should apply the MF approximation and filed-theoretical
renormalization group techniques. The results can be used in interpre-
tations of experiments and Monte Carlo simulations.
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