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Abstract. Due to different reasons the coronary stent become more and
more popularity. There are different type of stents in the construction
and inaterials.

For the reliability of stent the mechanical behaviour is of exclusive im-
portance. The experimentally estimation of this behaviour is often im-
possible due to the expensive tests and need of specialized apparatus.

As an international standard for releasing a stent into production the
“Guidance for Industry and FDA Stuff – Non-clinical Engineering Tests
and Recommended Labeling for Intravaskular Stents and Associated De-
livery Systems” is accepted.

In thisworkwe showaFinite Element pre-clinical simulation ofmechan-
ical properties of the stent during expanding of the stent and following
relaxation using the COMSOL software. The most important properties
of a real stent, which is under review for admission are predicted: diam-
eter of the stent, recoil, dogboning, critical stresses. These parameters
are in conformationwith other stents. The construction show ever better
parameters in comparison with classical Palmaz-Scatz types.

1 Introduction

The lack of long time effectiveness of percutaneous transluminal coro-
nary angioplasty (PTCA) and the coronary bypass (CABG) and the prize
of the coronary surgery lead the researchers to search new technologies
like laser angioplasty, atherectomy and implanted endovascular devices,
called stents. The stents becomemore andmore popular because of their
high success rate, of minimal invasive nature and the continued improv-
ing of their effectiveness.
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Every year over 1 million percutaneous interventions are performed in
the world. This exceeds the number of coronary bypasses (CABG) in the
year. The real use of coronary stents has been increased from10% in 1994
up to 80% in the current praxis [1].

Since the first stent appeared, the technology progresses very rapidly.
The flexibility of the stents has been improved. New materials and tech-
nologies for stent catheter systems have been developed, the coronary
stenting found an use for different lesions [1,2]. Despite of the success,
some problems like restenosis (18-32%) [3,4], migrations [5], recoil [6] or
positioning [7] still exist. Restenosis was the main motive for develop-
ment of the stent-techniques [8].

Up today, there aremanypublications, dedicated to typicalmedical prob-
lems which are in relation with stenting technique like biocompatibility
of the material, thrombosis and neointimal pathology. New innovative
stents appeared on the light, as example bioceramic and biopolymer, ra-
dioactive, bio-degradable stents, as well stent, which discharge medical
preparates [1,8-10].

However, the connection between the stent and its equipment, especially
of the ballon, the mechanical behaiour of the stent is not fully cleared
[11-14].

2 Materials and Methods

2.1 Stent parameters studied

Following parameters of the expanded stent have been calculated as a
function of the expanding balloon pressure: distal and central diameter
in the stationary case, dogbonig, recoil, foreshortening.

Distal and central diameter

These parameters of the stent show the aperture in expanded state of the
stent after removing the balloon pressure in both end and middle of the
stent. It is in a connection with the diameter, which is needed for normal
blood circulation.

Dogboning

The dogboning shows the difference in the distal and central diameter.
It will be calculated as follows:

DB =
dmiddle − ddistal

dmiddle
× 100% ,
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where DB is the dogboning calculated in percents. The dogboning can be
positive, as well as negative.

Recoil

Recoil is defined as the ratio of diameter difference or the fully inflated
and relaxed stent over the inflated diameter:

SR =
dinflated − drelaxed

dinflated
× 100% ,

where SR is the stent recoil.

Foreshortening

Foreshortening FS is the ratio of stent length difference at relaxed and
initial states over initial length

FS =
lrelaxed − linitial

linitial
× 100% .

2.2 3D geometrical model

The studied real stent is a S-shaped stent with a repeated unit cell (RUC)
which planar form is shown in Figure 1. RUC is repeated after rotation in
60◦ around the stent axis and translated an half RUC along the axis. Fig-
ure 1 shows the uncoiled form of a stent with initial diameter of 1.6 mm
and a length of 10 mm and typical strut thickness of 100 µm.
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Fig. 1. Repeated Unit Cell (RUC) of a real coronary stent 

 

After the planar model by using AutoCAD has been created, a 3D model of stent has been 

prepared in SolidWorks, imitating the process of 3D laser cutting with a Nd
3+

:YAG laser and 

the following chemical etching. Fig. presents the final 3D model of the stent. 

 

Fig. 2. 3D model of the stent 

 

The model has been imported in Comsol, a FEM modeling and simulation software. 

Figure 1: Repeated Unit Cell (RUC) of a real coronary stent.

After the planar model by using AutoCAD has been created, a 3D model
of stent has been prepared in SolidWorks, imitating the process of 3D
laser cutting with a Nd3+:YAG laser and the following chemical etching.
Figure 2 presents the final 3D model of the stent.
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Figure 2: 3D model of the stent.

Themodel has been imported in Comsol, a FEMmodeling and simulation
software.

Governing equations

As Physics Structural Mechanics model has been chosen. Linear elastic
deformation has been calculated, as well as plastic deformation, follow-
ing the material stress-strain curve (Linear elastic Material node with
Plasticity subnode). The inflation and relaxing of the stent has been
studied using a stationary solver. The balloon pressure has been change
parametrically from 0 Pa to maximal pressure of 8 atm and backwards.

Material properties

As material medical stainless steel has been introduced. Table 1 shows
the mechanical parameters of the steel. The steel has been accepted to
nearly incompressible with small plastic strains model.

Table 1: Material constants of stainless steel 317L

Density Young’s modulus Poisson’s Yield strength Isotropic tangent UTS
(kg/m3) (GPa) ratio (MPa) modulus (GPa) (MPa)

8027 200 0.276 170 2 627

In order to collect all data from different points around the peripheral in
the middle and at the ends and to round the data, concerning the diam-
eters, a MFC computer program has been developed.
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Mesh

A modified Physics controller Normal mesh has been used to overcome
small element, generated by the wrapping of stent pattern over the steel
tube. The smallest size of an element has been selected to 1 µm.

3 Results

Balloon pressure

In order to estimate the working balloon pressure, a pre-simulation has
been performed. In this simulation the stent has been expanded to
a pressure of 8 atm (see Figure 3). The required diameter of approx.
2.53 mm is achieved at parameter 0.5, i.e. 4 atm.
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Fig. 3.  Diameters at 8 atm balloon pressure: left - at the end, right - in the middle 

4.1.2. Stent parameters 

Table 2 show the mechanical parameters of the real stent after inflation with maximal balloon 
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Table 2. Results of calculations 
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5. Discussion 

The simulation of a real S-shaped stent show very good mechanical parameters. The 

construction allows a relatively low balloon pressure of approx. 4 atm to arrive the need inner 

diameter of 2,5-3 mm, which is preferable in order to avoid problems during inflation of the 

balloon.  

The recoils have low values. This guarantees that the diameter of the inflated stent will 

not decrease significantly after it is mounted in the vessel an balloon is depleated. The 

negative foreshortening is neglictible. 

A peculiarity of the stent is its negative dogboning. This type of construction allows a 

more better position of the stent, putting the stent middle in the point of minimal vessel 

diameter. 

The von Mises stresses lie under critical value of UTS (627 MPa). This should guarantee a 

long stent life. 
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Figure 3: Diameters at 8 atm balloon pressure: top – at the end, bottom
– in the middle.
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Stent parameters

Table 2 shows the mechanical parameters of the real stent after inflation
with maximal balloon pressure of 4 atm.

Table 2: Results of calculations

Distal Middle Recoil Recoil Fore- Dog- Maximal
diameter, diameter, distal, middle, shortening, boning, von Mises stress
mm mm % % % % MPa

2.6 2.8 1.5 1.6 -1.7 -26.3 400

4 Discussion

The simulation of a real S-shaped stent shows very good mechanical pa-
rameters. The construction allows a relatively low balloon pressure of
approx. 4 atm to achieve the need inner diameter of 2.5–3 mm, which is
preferable in order to avoid problems during inflation of the balloon.

The recoils have low values. This guarantees that the diameter of the
inflated stent will not decrease significantly after it is mounted in the
vessel an balloon is depleted. The negative foreshortening is neglectable.

A peculiarity of the stent is its negative dogboning. This type of construc-
tion allows a more better position of the stent, putting the stent middle
in the point of minimal vessel diameter.

The von Mises stress lies under critical value of UTS (627 MPa). This
should guarantee a long stent life.
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