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Abstract. An eight states multi-site non-homogeneous hidden Markov
model that links daily precipitation amounts data at a network of 31
stations broadly covering the territory of Bulgaria to large-scale atmo-
spheric patterns is developed. A technique to simulate daily precipita-
tion amount at sites that belong to the network of stations, not explicitly
included in this multi-site model is considered. The results show that
the downscaled simulations reproduce well the observed precipitation
amount, the wet and dry spell length distributions.

1 Stochastic Daily Precipitation Model Using NHMM

Stochastic precipitation models are important for forecasting and simu-
lation purposes in climate, hydrological and environmental system stud-
ies in modeling runoff, soil water content, crop growth, droughts and
floods. These models can aid in understanding the performance of these
systems under specific precipitation regimes. Depending on the required
precipitation timescale, various models, such as hourly, daily, weekly,
monthly, seasonal or annual, have been developed to quantify complex
precipitation features. These models can be characterized as at-site and
multi-site models (un)conditional of the atmospheric variables as well
[1,2]. Once the precipitation model has been calibrated for a given terri-
tory one can use it to generate long sequences of artificial daily precipi-
tation data. These sequences can be used to estimate statistics relating
to precipitation events in exactly the way one would do so if a long se-
quence of precipitation data were available.

There are two different main approaches of relating daily precipitation
to synoptic atmospheric patterns in development of the multi-site pre-
cipitation models, the so called weather state models.

The traditional weather state models are discussed in [3–6], just to name
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a few. The synoptic atmospheric patterns of this approach have been
either subjectively or objectively derived using principal components,
canonical correlation analysis, fuzzy rules, neural networks, correlation-
based pattern, recognition techniques, analogue procedures, etc. Intro-
ducing such an intermediate layer (the weather patterns) precipitation
is linked to the circulation patterns using conditional probabilities. Al-
though its physical transparency the above approach has been criticized
that suffers from some limitations, e.g., the veracity of weather pattern
models depends upon the chosen weather classification system.

The second approach for downscaling uses a Non-homogeneous Hid-
den Markov Model (NHMM) to simulate precipitation occurrence or
amounts. The NHMM relates synoptic-scale atmospheric circulation
variables through a finite number of hidden (unobserved, latent) pre-
cipitation patterns (states) to multi-site, daily precipitation occurrence
or amounts data. The NHMM determines the most distinct patterns in
a daily multi-site precipitation occurrence records rather than patterns
in atmospheric circulation [7]. These patterns (precipitation states) are
then defined as conditionally dependent on a set of atmospheric predic-
tor variables. Unlike other downscaling techniques based on classifica-
tion schemes these states are not defined a priori. A first-order Markov
process defines the daily transitions from precipitation state to another.
The process is described as non-homogeneous as the transition prob-
abilities are conditional on a set of atmospheric circulation predictors.
The atmospheric predictors may include raw variables such as mean sea
level pressure (mslp) or derived variables such as mslp gradient. In this
way, the NHMM captures much of the spatial and temporal variability
of the precipitation occurrence process. Model selection involves se-
quential fitting of several NHMMs with an increasing number of weather
states and atmospheric predictors. The fits are evaluated in terms of the
physical realism and distinctness of the identified precipitation states
as well as a Bayesian information criterion (BIC). The objective is to se-
lect a NHMM that minimizes the BIC, thus identifying a relatively par-
simonious model that fits the data well. The most likely precipitation
state sequence is obtained from the selected NHMMusing the Viterbi al-
gorithm [8]. This permits the assignment of each day to its respective
state. The ability to classify days into states that are distinct in terms
of precipitation as well as synoptic situation means that the realism of
the states is directly interpretable in terms of regional synoptic clima-
tology. Due to these states the spatial precipitation dependence can be
partially or completely captured. The advantage of using the NHMM is
that it can simulate stochastically the effects of large-scale atmospheric
circulation on local weather at multiple gauge stations, i.e., a multi-site
is constituted in this way. We note that the at-site daily precipitation
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models cannot be easily extended to multiple sites as that requires mod-
eling spatial dependencies between the stations [9]. Moreover, there is
no guarantee that these models can generate synchronized daily precip-
itation occurrence sequences in a small size region.

The non-homogenous hidden Markov Models (NHMM) have found
widespread application in meteorology and hydrology in Australia,
North and South America in studies of climate variability or climate
change, statistical downscaling of daily precipitation from observed and
numerical climate model simulations. For instance, [10] presented the
NHMM for climate change condition in southwestern Australia. The
NHMM were extended in [11] by incorporating rainfall amount. The
results showed that the extended NHMM accurately simulates the sur-
vival curves for dry (wet) spell lengths, wet day probabilities, daily
rainfall amount distribution, and intersite correlations for daily rainfall
amounts. TheNHMMwas used in [12] tomodel the rainfall amount inde-
pendently at each rainfall station as gamma deviates with gauge-specific
parameters in Washington. They verified that the model responded to
shifts in atmospheric circulation from a reserved data set. In [13] a
NHMM rainfall occurrence was applied over Northeast Brazil and it was
found that interannual variability in the frequency of occurrence of dry
spells could be simulated well. The ability of the extended NHMM to re-
produce observed interannual and interdecadal rainfall variability when
driven by observed and modeled atmospheric field was investigated [14].
TheNHMMwas applied to 11 stations overNorthQueensland in [15]. The
results showed that themodel was able to simulate accurate station level
simulations of the interannual variability of daily rainfall amount and oc-
currence. A 4-state HMM is developed in [16] to a network of 13 stations
in central western India. Their results have shown enough evidence to
the HMM representation of monsoon spatio-temporal variability. The
statistical modeling techniques with NHMMs are given in [8] whereas
specific details about fitting precipitation data can be found in [12, 20]
and [21]. A recent review about multi-site daily precipitation data con-
ditional on the atmospheric circulation data is given in [22].

2 Multi-site Daily Precipitation Model for the Territory of Bulgaria

Since 2005 we have been investigating the usage of the NHMM to link
synoptic-scale atmospheric circulation variables to daily precipitation
data at a network of rain gauge stations via several hidden (unobserved)
states, [17] and [18]. The evolution of these states is modeled as a first-
order Markov process with state-to-state transition probabilities condi-
tioned on some indices of the atmospheric variables. Due to these states
the spatial precipitation dependence can be partially or completely cap-
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tured. The NHMM was fitted and independently tested to daily precip-
itation at 31 rain gauge stations covering broadly the territory of Bul-
garia. At each site a 40-year record (1960-2000) of daily precipitation
amounts is modeled. For the warmer half-years only the days with pre-
cipitation amounts greater then 2mmwere included in the study to drop
out the days with convective rainfalls. The data consists of all dry and
wet days for the cold half-years according to the cutoff c ≥ 0.1mm value
and all dry and wet days according to the cutoff c ≥ 2mm for the warmer
half-years. The number of days included in the study is 11323. The at-
mospheric data consists of daily mean sea-level pressure, geopotential
height at 850 hPa, air temperature at 850 hPa and relative humidity at
700 hPa on a 2.5◦ × 2.5◦ grid based on NCEP-NCAR reanalysis dataset
covering the Europe-Atlantic sector 30◦E-60◦E, 20◦N-70◦N for the same
period. The first 30 years data were used for model fitting purposes while
the remaining 10 years were used for model evaluation.

2.1 Data reduction of dimensionality

The singular value decomposition (SVD) technique, described by [19],
was applied to the correlationmatrix between the precipitation amounts
at each of the 31 sites and the corresponding atmospheric variables at
276 nodes. From Table 1 it is seen that a few summary variables ex-
plain most of the correlation between each field and the precipitation
process. For instance, the first summary variable of the coupled patterns
(atmospheric - precipitation fields) included in the study, accounts for
more than 90% of the correlation. However, these summary variables
are highly correlated. Therefore a standard principal components analy-
sis was applied to the composed field based on the first summary variable
of each of these fields. As a result of this, three new scalar indices (again
denoted by F1, F2 and F3) were constructed which account for 95% of the
total variance of the composed field as shown in Table 2.

Some occurrence and amounts homogeneous and nonhomogeneous hid-
den Markov models were calibrated closely following the hierarchical

Table 1: Cumulative proportion of correlation explained by the summary
variables

eigenvalues: % 1st % 2nd % 3rd

rhum.700 93.01 96.89 98.34
rhum.850 92.15 96.42 98.07
air.850 94.22 97.82 99.29
hgt.850 94.63 97.40 98.75
slp 93.09 97.79 99.33
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Table 2: Cumulative proportion of variance explained by the 1st sum-
mary variables of the composite field based on slp, hgt.850, rhum.700,
rhum.850 and air.850

names F1 F2 F3 F4 F5

eigenvalues: % 1st % 2nd % 3rd % 4rd % 5th
composite 73.00 86.00 95.00 99.99 100.00

procedure over all days of 1960-1990 period. As could be expected the
8 states NHMM stochastic precipitation model calibrated without Plov-
div station is almost the same as multi-8.1.0.0 developed for the annual
8 states NHMMmodel for the 1960-1990 period calibrated on all 30 sta-
tions. It is characterized by a smaller number of unknown parameters.
On the other hand this multi-8.1.0.0 amount model is quite satisfactory
not only from formal statistical view point because of the lowest BIC
value but because of the distinctiveness and physical interpretability of
the weather states.

Our presentation will report some of our results and findings about the
calibrated multi.8.1.0.0 model in [18]. The plots of 1st, 2nd and 3rd
columns of Figure 1 present the NHMM estimated precipitation occur-
rence and intensity states and the composite mean sea-level pressure
(slp) patterns associated with these states. Each state is related with a
precipitation occurrence patterns and are found to be physically inter-
pretable in terms of regional climatology. The diameters of circles indi-
cate daily precipitation occurrence probabilities and intensities at each
site with the largest circle 1.0 and above 15mm, respectively. About the
slp patterns associated with the precipitation states we note that each
day is first classified into its most likely state according to the Viterbi al-
gorithm and, second, all days in a particular state are then averaged at
each grid node for the atmospheric variables to obtain the correspond-
ing composite fields. The precipitation states 1 and 8 occur on 46% and

Table 3: Comparison of homogeneous and nonhomogeneous annual
HMMsusing the conditional independence occurence and amountmodel
for P (Rt|St). The models are sorted according BIC values. The number
of the days included in the study is 11323

Model Number of Number of Negative BIC
model model log-likelihood

predictors pameters

Amount.multi.8.1 F1 830 347543.3 702834.3
Amount.HMM.8 0 776 358475.2 724194.0
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Figure 1: Precipitation occurrence probabilities (diameters of circles pro-
portional to probability of a wet-day with the largest circle 1.0), at-site
intensity (diameters of circles proportional to intensity with the largest
circle greater than 15mm) and composite sea-level pressure fields.

12% of days, respectively. The synoptic pattern associated with state 1 is
a typical dominant high pressure system centered at Balkan Peninsula.
The states from 2 till 8 are characterized by various spatial precipitation
probabilities. For instance, the circulation pattern related with state 2
can be associated with Mediterranean cyclones centered over Northern
Italy moving to Hungary due to southwestern flow. State 3 exhibits high
probability of rain at the southeast stations but low probability in the
rest of the country. The state 4 demonstrates the well known fact that
when the axis of the upper-level trough is over Eastern Bulgaria and the
Black sea the precipitation events are more likely in the North-Eastern
Bulgaria. The weather states from 5 till 8 are associated with a depres-
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Figure 1 (cont.): Precipitation occurrence probabilities (diameters of cir-
cles proportional to probability of a wet-day with the largest circle 1.0),
composite sea-level pressure (hPa), 850 hPa geopotential height (m),
At-site Intensity (diameters of circles proportional to intensity with the
largest circle greater than 15mm), air temperature and 700hPa relative
humidity fields averaged over all days classified under each weather state
for the multi.8.1 model.

sion centered over the central Mediterranean and the Southern Italy in
the mean sea-level pressure field and an upper-level trough with differ-
ent amplitude and tilt in the geopotential height at 850 hPa. The model
adequately accounts what the general sense suggests that themost likely
precipitation events occur below the most humid middle troposphere as
well as within the polar frontal zone which follows from the patterns as-
sociated with the relative humidity at 700 and 850 hPa and the air tem-
perature field at 850 hPa (these plots are not included due to space limi-
tation).
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Figure 2: Clustering of the 31 rain stations according to the estimated
precipitation occurrence probabilities for the eight state conditional in-
dependence model.

Clusters of rain gauges based on the precipitation occurrence probabil-
ities parameter estimates of model.8.1.0.0, the occurence component of
the model, are presented in the plots of Figure 2. It is seen that the clus-
ters belong to distinct geographical climate regions of Bulgaria. There-
fore a method to simulate precipitation amount at sites that belong to
the network of stations, not explicitly included in the model can be de-
veloped on the basis of this regionalization. We propose estimating the
parameters of such a station of interest as a weighted linear combina-
tion of parameter estimates of the neighbouring rain gauge stations ac-
cording to occurrence clusters. The weights can be the inverse distances
between the station of interest and the neighbouring precipitation sta-
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tions. In this way, this would make the calibrated NHMM available at
sites where precipitation records are not available.

3 At-Site Precipitation Amount Simulation Which Is Not from the Stations
Network

In the following we will demonstrate the potential applicability of this
approach dropping out Plovdiv station from the stations network.

The plots in Figure 3 show quantile-quantile plots in logarithmic scale
of the observed versus model-based precipitation intensities for Plovdiv
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Figure 3: QQ-plot in logaritmic scale of simulated vs observed precipi-
tation intensities for Plovdiv station. The simulated and historical pre-
cipitation intensities are calculated over all days classified under each
weather state separately and totaly. The 8-state NHMM daily model is
calibrated for the 1960-1990 period on the whole year data.
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station based on multi-8.1.0.0 model. Recall that simulated and histor-
ical precipitation intensities are calculated over all days classified un-
der each weather state separately and totally. Figure 4 are similar, how-
ever, the simulated precipitation intensity data are based on the precip-
itation model parameter estimate defined as a weighted linear combi-
nation of the parameter estimates of Plovdiv neighbouring gauge sta-
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Figure 4: QQ-plot in logaritmic scale of observed vs simulated precipi-
tation intensities for Plovdiv station for the historical period 1960-1990.
The simulated precipitation intensity data are based on the parameter
precipitation model estimate defined as a weighted linear combination
of Plovdiv neighbouring gauge stations parameter estimates according to
occurrence and intensity clusters due to the 8-state NHMM daily model
calibrated for the 1960-1990 period on thewhole year data. The artificial-
based and historical precipitation intensities are calculated over all days
classified under each weather state separately and totaly.
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Figure 5: On the left-hand two plots are given the observed (solid line)
vs downscaled (box-plots) 1960-1990 annual wet-day frequencies and
amounts for Plovdiv. The box-plots depict the range of 500 simulation
trials (the edges of the box represent the 25 percentile and the 75 per-
centile of the simulations) produced by the 8-state NHMM. The same
info is presented on the right-hand two plots, however, the downscaled
(box-plots) 1960-1990 annual wet-day frequencies and amounts data
are based on the parameter precipitation model estimate defined as a
weighted linear combination of Plovdiv neighboring gauge stations pa-
rameter estimates according to occurrence and intensity clusters due to
the 8-state NHMM daily model calibrated for the 1960-1990 period on
the whole year data.

tions (Sadovo, Chirpan, Ivailo) according to occurrence clusters due to
the 8-state NHMM daily model calibrated for the 1960-1990 period on
the whole year data. Results of similar standard are obtained about other
stations using this technique.

Plots in the Figure 5 present conditional simulations, the range in sim-
ulated annual wet-day frequencies and total rainfall amounts about sta-
tion Plovdiv. The visual assessment confirm that the approach does well
at capturing the interannual variability.

The wet spells distributions of the Plovdiv stations are presented in the
plots of Figure 6. It is seen that the temporal correlation in the historical
data is also well captured by the proposed methods. Results of similar
standard based are obtained for the remaining stations.
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Figure 6: On the left-hand plot are given the observed and model-based
wet spells distribution at Plovdiv station for the historical period 1960-
1990. On the right-hand plot is given the the same info, however, the
parameter precipitation model estimate is defined as a weighted linear
combination respectively of Plovdiv neighbouring gauge stations param-
eter estimates according to occurrence and intensity clusters due to the
8-state NHMM daily model calibrated for the 1960-1990 period on the
whole year data.

4 Conclusions

The space-time precipitation model can be used to generate simulations
of precipitation amounts that incorporate synoptic atmospheric infor-
mation. The hidden Markov model assumptions simplify the temporal
and spatial structures to be parameterized, since the common weather
state accounts for the temporal dependence and much of the spatial
correlation between rain gauges. Several possible improvements to the
model are currently under investigation, including more realistic spatial
dependence structures and reduced parameterizations.

Models like the NHMM can be used to study the effect of climate vari-
ability. Repeated GCM simulations under current climate conditions can
constitute different realizations of the atmospheric fields included in the
model. The NHMM can be used to generate occurrences and amounts for
each realization, thereby downscaling the effect of the variability in the
synoptic-scale variables to precipitation. The output of GCM runs un-
der altered climate conditions can serve as input into the downscaling
model. Thus, the effects of the altered climate scenario could be down-
scaled to the local-scale precipitation processes by generating precipita-
tion occurrences and amounts from the NHMM. Promising results in this
direction are given in [10] and [11].
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