3rd National Congress on Physical Sciences, 29 Sep. – 2 Oct. 2016, Sofia Section: The Role of the Physical Sciences for the Bulgarian Industry and ...

Високочувствителни кварцови температурни сензори

Л. Спасов

Институт по физика на твърдото тяло "Академик Георги Наджаков" Българска Академия на науките, бул. 'Цариградско шосе 72, София

Резюме. Докладът представя една рзработка на термочувствителени кварцови резонатори (ТЧКР) с NLC-срез и тяхната възможност за приложение като атрактивни високочувствителни температурни сензори. Температурната чувствителност на среза е 30 ppm/°C, което съответствува на 1000 Hz/°C за кварцов разонатор на 29.3 MHz на основна честота. Новият срез има значителни технологични предимства в сравнение с използвания от Хюлет-Пакард (САЩ) LC-срез.

На базата на този срез в ИФТТ – БАН е създаден високочувствителен кварцов температурен сензор (КТС) с монотонно нарастваща температурно-честотна характеристика (ТЧХ), претърпял няколко иновации в своето развитие.

В работата е представена една разработка на КТС и резултатите от проведените изследвания на акустичните и метрологичните му характеристики в широк температурен интервал от 4.2 К до 420 К. След успешно издържани изпитания в условията на силни електрични и магнитни полета (до 5 Тесла), КТС бе включен в криогенния комплекс на ядрения ускорител "Нуклотрон" в ОИЯИ в Дубна, Русия за измерване температурата и скоростта на хелиевия поток.

Разработена е конструктивна и технологична документация за промишлено производство на КТС и е предадена на малко предприятие за внедряване.

1 Въведение

Термочувствителните кварцови резонатори (ТЧКР) стават много атрактивни като високочувствителни температурни сензори за научни и индустриални приложения. Те притежават добра възпроизводимост, висока чувствителност, дълговременна стабилност и независимост от въздействието на електрични, магнитни и радиационни въздействия.

2 Физически основи на КТС

Най-важното предимство на пиезоелектричния кварца е неговата анизотропност. Тя позволява да се моделират физическите му свойства. Това дава въможност да се проектират кварцови резонатори, които да притежават незначителна или силна температурна зависимост на честотата в зависимост от оринтацията на кварцовата пластина спрямо кристалографските оси. На тази основа са разработени серия от различни термостабилни (термокомпенсирани) кварцови резонатори на базата на широко известния АТ-срез [1-3]). Те в продължение на повече от 80 години се използват за честотен контрол в телекумоникацията, а през последните 20-30 години и като еталони на време в микропроцесорните системи и битовата електроника.

Фиг. 1: Кварцов кристал.

От 1962 г. започна нов подход на системни изследвания върху температурната зависимост на честотата с цел създаване на атрактивен температурен сензор [4-6].

Температурната зависимост на честотата изключително зависи от ориентацията на пластината спрямо кристалографските оси на кварца. Тя може да бъде представена посредством полином от 3-ти ред [1]:

$$f(t) = f_0 \left[1 + \sum_{n=1}^{3} T_f^{(n)} \left(t - t_0 \right)^n \right],$$

където n = 1, 2, 3

$$T_f^{(n)} = \frac{1}{f_0 n!} \left. \frac{\partial^n f}{\partial t^n} \right|_{t=t_0}$$

Температурният коефициент на

честотата $T_f^{(n)}$ е сума от температурните коефициенти на честотата от първи, втори и трети ред

$$T_f^{(n)} = T_f^{(1)} + T_f^{(2)} + T_f^{(3)}.$$

Изследователите на Хюлет-Пакард впрегнаха най-мощната по това време изчислителна техника в света за пресмятане на температурните коефициенти на кварцовата на пластина в зависимост от

ориентацията й спрямо кристалографските оси. Намерена бе една единствена ориентация в кварца, не съвпадаща с нито една от кристалографските оси, при която температурният коефициент от първи ред има положителна стойност $\binom{1}{f} > 0$, а тези от втори и трети еновременно са нули $\binom{2}{f} = \binom{2}{f} = 0$. Срезът бе наречен *LC-срез* (срез с линеен температурен коефициент). Изпълнението на резонатор с този срез обаче е спътстван с много технологични трудности за постигане на зададената ориентация, а пиезоелементът представлява трудно изпълнима плоско изпъкнала леща.

Тези резонатори бяха продавани като температурни сензори в продължение на повече от 25 години [7]. Главният недостатък на този сензор бе твърде високата цена на двойно завъртяния срез на кварцовата пластина в сравнение с еднократно завъртяните Y-срезове.

През 1987 година в лаборатория Акустоелектроника на ИФТТ при БАН бе извършено компютърно изследване на температурните коефициенти на завъртяни Y-срезове от минус 90° до плюс 90° спямо оста Z през една дъгова минута. Изследването бе проведено с цел да се потърси ориентация, при която нелинейните температурни коефициенти от 2-ри и 3-ти ред взаимно да се компенсират.

Фиг. 2: АТ-срез и новият NLCсрез в кварца.

За кварцови резонатори със завъртян Y-срез и дебелинно-напречна мода на трептене резонансната честота се определя от

$$f = \frac{1}{2h} \sqrt{\frac{c_{66}'}{\rho}}.$$

Тукhе дебелината на пластината (честото
определящия размер), ρ – плътността на кварца

$$c'66 = c_{66}\cos^2\theta + c_{44}\sin^2\theta + c_{14}\sin 2\theta,$$

където c_{ij} – еластичните константи, а θ – ъгълът между оста Z и главната повърхност на пиезоелемента.

Фиг. 3: Кварцова пластина NLC-срез.

Знаейки температурните коефициенти за c_{ij} , е намерена ориентация на пластината, при която температурният коефициент от първи порядък ($T_f^{(1)} > 0$) има положителна стойност, докато температурните коефициенти от втори $T_f^{(2)}$ и трети $T_f^{(3)}$ порядък имат еднакви стоиности, но с различни знаци. Това значително намалява нелинейността на ТЧХ.

Предложен бе нов, еднократно завъртян срез в кварца, Y-срез $(yxl/ - 31^{\circ}30')$, който назоваха *NLC-срез* (new linear coefficient) нов срез с линеен характер на

ТЧХ. Той има незначително нелинейно отклонение ($\pm 0.2^{\circ}$ С) в температурния интервал от минус 30°С до 130°С [8,9].

Температурната чувствителност на среза е 30 ppm/°C, което съответства на 1000 Hz/^circC за кварцов разонатор на 29.3 MHz на основна честота. Новият срез има значителни технологични предимства в сравнение с използвания от Хюлет-Пакард LC-срез: *лесна и повторима* рентгенова ориентация на кварцовата пластина до 10 дъгови секунди, 30% *по-висока акустична скорост*, което дава възможност КР да работи на основна мода при високи честоти и възможност за прилагане на широко използваните технологии при производство на високочестотни КР със завъртяните Y-срезове.

На базата на този срез в ИФТТ – БАН е създаден високочувствителен кварцов температурен сензор на 29.3 MHz (КТС), претърпял няколко иновации в своето развитие [10,11].

3 Изследвания и технологично развитие на КТС в България

Диаметърът на кварцовата пластина е 5 mm и дебелина 82 μ m. След полиране върху главните повърхности на пластината са отложени сребърни електроди с диаметър 2,9 mm и дебелина 100 nm. Пиезоелементите са монтирани и затворени в стандартен корпус HC-49U, запълнен със сух азот или хелий в зависимост от температурния интервал, за който са предназначени да работят.

На Фиг. 4 е представен дизайнът, размерите на КТС, а на Фиг. 5 – неговият външен и вътрешен вид.

Фиг. 4: Дизайн на КТС (mm).

Фиг. 5: Фотография на КТС.

На Фиг. 6 е представена ТЧХ на КТС в температурния интрвала от минус 20°С до 120°С.

Температурната чувствителност на сензора C_t в целия температурен интервал е 1000 Hz/°C, което позволява да бъдат регистрирани температурни промени в измерваната среда, по-малки от 0.001°C.

По договор, финансиран от Обединения Институт за ядрени изследвания (ОИЯИ) – Дубна, Русия, в продължение на няколко години бяха проведени задълбочени температурни изследвания при криогенни температури от 4.2 К до 420 К (Фиг. 7).

Фиг. 7: Блок-схема за изследвания на КТС при криогенни темпертури.

Фиг. 8: Ro топография на пиезоелемента (а) и смущения в ТЧХ на КТС (б).

Анализирана е появата на смущения в ТЧХ на КТС при някои криогенни температури, т.н. "aktivity dips", възникнали в резултат на засилено влияние на свързаните надлъжни акустични вълни в кварцовата пластина.

6

На база получените резултати [13] бяха внесени корекции в дизайна и оптимизиран кварцовия пиезоелемент, който обезпечва монотонно нарастваща функция на температурната зависимост на честотата без прекъсване или прескачане на други честоти [14] (Фиг. 9).

Фиг. 9: ТЧХ на КТС (4.2-300 К).

Метрологични характеристики 4

- Температурен интервал: 4.2 К до 420 К [17];
- Температурна чувствителност $C_t = \Delta f / \Delta T$

Минимални температурни флуктоации които могат да бъдат регистрирани при [18]:

- 4,2 K, $\Delta T_{\min} = 50 \text{ mK},$ 20 K, $\Delta T_{\min} = 8 \text{ mK},$ $\Delta T_{\min} = 0, 12 \text{ mK,}$ $\Delta T_{\min} = 0,085 \text{ mK,}$ 130 K,
- 300 K,
- Времеконстанта (време на отклик) [17]
- Дълговременна стабилност на КТС [18]

Дълговременната стабилност в продължение на 1400 дни на резонансната честота на КТС е в рамките на 2×0^{-6} (Фиг. 12) [18], което съответства на температурна стабилност на сензора 0.005°С (Фиг. 13).

Фиг. 11: Изпитание на КТС при при циклична промяна от 0°С на 100°С.

Резултатите от проведените изпитания гарантират надеждна работа на КТС в продължение на повече от 10–15 години без необходимост от допълнителна калибровка.

Фиг. 12: Дълговременна стабилност на резонансната честота на КТС.

Фиг. 13: Стабилност на КТС, изразена в температурна промяна.

5 Предимства на кварцовите температурни сензори (КТС)

Едни от най-важните предимства на КТС пред температурните сензори, създадени на други физически принципи за работа в темпера-

турния интервал са:

- Широк динамичен интервал включително криогенни температури (4.2 К до 420К);
- Висока чувствителност (достигаща до 0.0002°С)
- Висока абсолютна точност (до 0.005°С*);
- Независимост от силни електрични, магнитни и радиационни полета;
- Изходен сигнал много удобен за цифрова обработка на информацията;
- Дълговременна стабилност, гарантираща надеждна работа на сензорите без допълнителна калибровка.

Доклади и публикации

Резултатите от изследванията върху кварцовите температурни сензори и техните приложения, проведени в продължение на 20 години, са представени на повече от 25 наши и международни научни форуми и са отразени в повече от 40 публикации и 2 патента. Успешно са защитени 2 докторски дисертации и 1 дисертация за доктор на физическите науки.

Конструктивна и технологична документации

Разработен е пълен комплект от конструктивна и технологична документация в съответствие с БДС за промишлено производство на КТС и е предадена на малко предприятие за внедряване.

Литература

- R. Bechman, A.D. Balato and T.J. Lukaszek, Higher Order Temperature Coefficients of the Elastic Stiffness and Compliance of Alfa-quartz, Proc. of IRE, 50 (1962) 1812-1822.
- [2] A.G. Smagin and M.Y. Yaroslavski, Piezoelectrichestvo quartza i quartzevie resonatori, Energia, Moscow, 1970 (in Russian).
- [3] P.G. Pozdniakov, Handbook of Quartz Resonators, Sviaz, Moscow, 1978, pp. 49-54 (in Russian).
- [4] W.H. Wide and L.J. Slutsky, Quartz Crystal Thermometer, Rev. Sci. Instr., 33 (1962) 212-213.

^{*}В зависимост от точността на системата за калибриране

- [5] D.L. Hammoud and A. Benjaminson, Linear Quartz Thermometer, Instrum. Control Syst., vol. 38, 115-119, 1962.
- [6] W.L. Smith and W.J. Spencer, Quartz Crystal Thermometer for Measuring Temperature Deviations in 10^{-3} to 10^{-6} °C range, Rev. Sci. Instr., vol.34, 268-270, 1963.
- [7] Quartz Thermometer 2804A, Hewlet Packard catalog
- [8] M. Borissov, L. Spassov et al., Quartz Resonator, Bulgarian Patent N 81377, 1987.
- [9] M. Borissov, L. Spassov, E. Yossifov, A. Balabanova, E. Radeva, New Cut of a Quartz Resonators With a Linear Temperature Frequency Characteristic, Electronics Letters, Vol.23 (1987), pp. 169-171.
- [10] L. Spassov, Piezoelectric quartz resonators as highly sensitive temperature sensors, Sensors and Actuators A, 30 (1992), pp. 67-72.
- [11] L. Spassov, E. Yossiffov, V. Georgiev, L. Vergov, A Rotated Y-cut Quartz Resonator with a Linear Temperature-Frequency Characteristic, Sensors and Actuators, A58 (1997), 185-189.
- [12] М. Борисов, Л. Спасов, А. Балабанова, Н. Николова, М. Янакиев, Л. Вергов, Високочувствителен кварцов термометър QT-87, сп. Стандартизация, сертификация и метрология, 4, 1991, стр. 48-50.
- [13] L. Spassov, V. Georgiev, L. Vergov, N. Vladimirova, V. Drobin, N. Agapov, Some investigations on thermosensitive quartz resonators at cryogenic temperature, Proceedings of EUROSENSORS X, Septemper 8-11, 1996, Leuven, Belgium, pp.1421-1424.
- [14] B. Dulmet, R. Bourquin, L. Spassov, V. Georgiev, R. Velcheva, Investigation of activity-dips in thermo-sensitive quartz resonators at cryogenic temperature, Proc. of the 15-th EFTF, 6-8 March 2001, Neuchatel, Switzerland, pp. 79-83.
- [15] R. Velcheva, L. Spassov, Yu. Filipov, V. Miklayev, V.G. Shabratov, Influence of Magnetic Field on the Frequency Response of the Thermosensitive Quartz Resonators, Proc. of Relativistic Nuclear Physics from Hundreds of MeV to TeV, Varna, 2001, pp. 155-161.
- [16] R. Velcheva, L. Spassov, Yu. Filipov, V. Miklayev, E. Kulagin, Radiation resistance of thermosensitive quartz crystal resonators, Proc. of the 16th EFTF, March 2002, St. Petersburg, Russia, pp. D048 to D050.
- [17] L. Spassov, R. Velcheva, Ts. Yordanov, L. Vergov, B. Dulmet, R. Bourquin, Investigations of Thermosensitive Quartz Resonators NLC-cut at Cryogenic Temperatures, 16th European Frequency and Time Forum, St.Petersburg, Russia, 2002.
- [18] L. Spassov, V. Gadjanova, R. Velcheva, B. Dulmet, Short and Long Term Stability of Resonant Quartz Temperature Sensors, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, V.55 No. 7 July 2008, pp. 1626-1633.